

1

					AICTE	Report	
	

	
	

Model	Curriculum	
	
	
for	
	
	

Undergraduate	Degree	Courses	
	
	
in	
	

Computer	Science	and	Engineering	
(Engineering	&	Technology)	

	
	
	
	

Report	submitted	by	the	committee	constituted	by	AICTE	for	model	design.	
March	2022 	

	
	

	

TABLE	OF	CONTENT	
	

Framework	for	CSE	Curriculum	Design	 1	
Context	and	Background	 1	
Graduate	Attributes	 2	

CSE	Core	Courses	 3	
Coverage	of	CS	Graduate	Attributes	by	the	Core	Courses	 5	
Micro	Specializations	(and	Professional	Electives)	 5	
Recommendations	for	Online	Credits	 6	
Recommendations	for	Multiple	Exits	 6	

Syllabus	for	CSE	Core	Courses	 7	
Data	Structures	and	Algorithms	 7	
Discrete	Mathematics	 14	
Computer	Organization	&	Architecture	 19	
Advanced	Programming	 25	
Operating	Systems	 32	
Design	and	Analysis	of	Algorithms	 39	
Database	Systems	 44	
Computer	Networks	 48	
Machine	Learning	 55	
Cyber	Security	 62	

Core	Courses	(Additional)	 67	
Compiler	Construction	 67	
Theory	of	Computation	 72	

Micro	Specializations	(and	Professional	Electives)	 78	
Software	Engineering	Micro	Specialization	 79	
Machine	Learning	Micro	Specialization	 81	
Distributed	and	Cloud	Systems	Micro	Specialization	 83	
Human-Computer	Interaction	(HCI)	Micro	Specialization	 85	

Appendix:	Recommendations	for	Using	Online	Content	in	Courses	at	
Colleges	and	Universities	 87	

Background	 87	
Issues	 87	
Modes	of	Learning	 87	
Evaluation	 90	
Other	Issues	 90	
Online	offering	of	AICTE	Model	Curriculum	Courses	by	Experts	 91	

Appendix:	Recommendations	for	Possible	Exits	for	a	BTech	CSE	 93	

Committee	and	Area	Experts	 94	

1	

Framework	for	CSE	Curriculum	Design	
	
Context	and	Background	
Computer	Science	has	changed	considerably	in	the	last	few	years	with	areas	like	Machine	Learning	
and	 Cloud	 computing	 becoming	much	more	 important.	 At	 the	 same	 time,	 the	 technologies	 and	
underlying	computing	systems	have	also	evolved,	considerably	easing	executing	some	of	the	tasks	
that	 earlier	 took	 much	 more	 training	 and	 experience.	 These	 changes	 require	 that	 teaching	 of	
computer	science	ought	to	suitably	adapt	–	to	reflect	the	changed	nature	of	the	discipline,	as	well	as	
to	update	 courses	with	 the	more	 recent	 technology	platforms.		And	this	 ought	 to	be	done	while	
providing	some	flexibility	to	the	HEIs	to	address	their	specific	constraints	and	focus.		With	these	in	
mind,	the	committee	for	model	curriculum	design	for	CSE	established	some	of	the	guiding	principles	
for	the	exercise:	
	
● The	focus	of	curriculum	design	is	the	4	yr	BE/BTech	program	in	CSE	and	the	target	audience	of	

the	 curriculum	 is	 the	 vast	 majority	 of	 universities/institutions,	 rather	 than	 the	 premier	
institutes	(who	design	their	own	curriculum	and	have	the	expertise	for	it.)	

● The	 existing	 CSE	 curriculum	 of	 AICTE	 will	 be	 the	 starting	 point.	 Suitable	
enhancements/modifications	will	be	made.	

● Flexibility.	Even	within	the	large	non-top	tier	education	system,	which	is	the	primary	target,	
some	have	better	infrastructure	and	capability,	so	it	is	desirable	to	provide	a	limited	degree	of	
flexibility	to	the	HEIs	on	the	curriculum.

To	 provide	 this	 flexibility,	 for	 each	 course,	 the	 learning	 outcomes	will	 be	 grouped	 in	 two	 –	
essential,	 and	 desired/advanced.	 The	 core	 courses	 will	 also	 be	 identified	 as	 essential	 and	
desired/advanced.		

This	simple	 framework	of	grouping	outcomes	and	courses	as	essential	and	desired	provides	
limited	 flexibility	 to	 institutions	 to	 design	 their	 curriculum	 depending	 on	 their	 capabilities,	
resources,	goals,	etc,	while	still	providing	guidance	for	a	sound	curriculum.	The	flexibility	can	be	
leveraged	by	institutions	to	provide	different	pathways	to	students,	and	multiple	exits.	

● Early	Exits.	The	new	education	policy	(NEP)	aims	to	provide	multiple	exit	points	to	students.	
To	support	more	than	one	exits	for	students,	it	is	important	to	develop	employability	skills	early,	
and	not	take	the	approach	of	first	focusing	on	foundations	and	then	develop	practical	skills.	Also,	
we	believe	that	all	but	a	few	students	will	go	for	full	degree,	hence	while	providing	flexibility	for	
early	exit,	the	outcomes	of	the	4	yr	degree	should	not	be	compromised.	We	propose:

● Eliminate	the	separation	of	theory	and	labs,	instead	break	courses	topic	or	theme-wise.	
This	will	allow	both	basic	theory	and	basic	skills	to	be	taught	together	and	build	skills	
early.	

● Introduce	discipline	courses	early,	so	disciplinary	skills	can	be	developed	early.	For	this	
have	one	sem	common	program,	and	allow	some	discipline	courses	in	2nd	sem	–	this	will	
also	help	students	in	getting	internships	/	part-time	jobs	in	summer.	This	will	require	

2	

branch	change	to	be	done	after	one	semester.	(For	lateral	entry,	some	make-up	courses	
may	be	needed.)	

With	this,	and	the	flexibility	provided	in	the	curriculum,	an	HEI	can	design	suitable	exits.	We	
explicitly	provide	a	recommendation	for	possible	exits	for	a	Btech	CSE	student.	

● Provide	guidance	for	labs/assignments.	A	small	analysis	the	committee	did	on	usage	of	AICTE	
curriculum	indicated	that	while	the	courses	and	topics	specified	in	the	curriculum	are	widely	
used,	 HEIs	 differ	 considerably	 in	 types	 of	 assignments/labs/projects	 they	 give.	 Also,	 this	 is	
where	 there	 is	 a	 perceived	 deficiency	 in	 education	 –	 while	 theory	 is	 covered	 suitable	
assignments/labs	are	not	give	for	students	to	develop	skills.	To	help	in	this,	it	was	decided	that	
for	each	course	design,	experts	will	also	recommend	nature	of	labs	and	assignments	for	each	
module	in	the	course.

● Pedagogy	suggestions.	With	the	emergence	of	a	host	of	online	resources	that	can	be	used	to	
support	teaching,	there	may	be	different	ways	to	teach	a	topic.	To	help	teachers	in	pedagogy,	for	
each	module	in	a	course,	pedagogy	suggestions	have	also	been	provided.

● Multiple	 pathways.	 For	 supporting	 multiple	 pathways	 within	 the	 academic	 program,	 we	
propose	 to	provide	 for	micro	specializations	 through	thematic	course	streams.	These	 can	be	
further	enhanced	by	HEIs	with	programs	like	honors	for	advanced	students	with	more	credits	
or	advanced	learning	outcomes,	etc.

	

Graduate	Attributes	
Curriculum	of	a	program	is	finally	a	network	of	credit	units	–	courses	(core,	disciplinary	core,	
disciplinary	 elective,	 open),	 internships,	 practice,	 projects,	 etc.	 which	 help	 achieve	 program	
goals.	Program	goals	can	be	stated	as	attributes	the	students	should	possess	on	graduation,	i.e.	
statements	about	the	learning,	values,	capabilities	etc.	of	graduates.	These	are	called	Graduate	
Attributes	(GAs).	A	program	typically	has:	
	
● General	GAs:	which	are	often	common	across	many	similar	programs	(e.g.	BTechs)	

and	focus	on	generalized	skills	and	capabilities	in	the	graduate.	
● Discipline	GAs:	are	discipline	specific	attributes,	which	focus	on	understanding	of	different	

concepts	 and	 systems	 related	 to	 the	 discipline,	 and	 on	 competencies	 and	 skills	 in	 that	
discipline.	
	

Together	the	GAs	define	the	goals	of	the	program.	The	aim	of	curriculum	design	is	to	evolve	a	
curriculum	that	can	develop	in	students	the	stated	graduate	attributes.	While	specifying	the	GAs	
and	designing	a	curriculum	for	it,	we	must	keep	a	basic	constraint	in	mind:	a	full	BTech	program	
has	8	semesters,	each	with	about	5	full	courses.	GAs	should	specify	only	what	can	be	taught	and	
absorbed	in	this	timebox	(i.e.	we	cannot	push	more	simply	by	adding	more.)	
	
Desired	Graduate	Attributes	for	the	CSE	program	are	given	below.	The	CSE	curriculum	design	will	
focus	more	on	delivering	the	discipline	GAs,	while	strengthening	the	general	GAs,	where	possible.	
Feedback	on	these	Graduate	Attributed	was	taken	from	many	representatives	from	industry,	as	well	
as	from	HEIs.	GAs	should	be	read	by	adding	this	at	the	start	of	each:		At	graduation	time,	a	student	
should	have:	

3	

	

									General	Graduate	Attributes	 Discipline	Graduate	Attributes	

G1	Ability	to	identify	a	problem,	analyze	
using	design	thinking	techniques,	and	
evolve	innovative	approaches	for	solving	
it.	

CS1	Proficiency	in	writing	in	at	least	two	dissimilar	
programming	languages	programs	of	modest	
complexity	which	are:	readable,	tested	for	
correctness,	efficient,	and	secure.	

G2	Ability	to	apply	mathematical	concepts	
and	techniques	in	problem	solving.	

CS2	Ability	to	design	and	apply	appropriate	
algorithms	and	data	structures	for	evolving	efficient	
computing	based	solutions	for	new	problems.	

G3		Ability	to	function	effectively	in	multi-	
cultural	teams	to	accomplish	a	common	
goal.	
	

CS3	Understanding	of	computing	systems	at	
computer	architecture,	operating	systems,	and	
distributed-	computing	levels,	and	how	they	affect	
the	performance	of	software	applications.	

G4	Ability	to	communicate	effectively	with	
a	wide	range	of	audience.	

CS4	Understanding	of	theoretical	foundations,	
fundamental	principles,	and	limits	of	computing.	

G5	Ability	to	self-learn	and	engage	in	life-
long	learning	and	upgrade	technical	skills	

CS5	Ability	to	analyse	large	volumes	of	data	
employing	a	variety	of	techniques	for	learning,	
better	prediction,	decision	making,	etc	

G6		An	understanding	of	professional	and	
ethical	responsibility	

ADVANCED/OPTIONAL	GAs		
CS6	Ability	to	design,	implement,	and	evaluate	
computer	based	system	or	application	to	meet	the	
desired	needs	using	modern	tools	and	
methodologies	

G7	Ability	to	undertake	small	research	
tasks	and	projects.	

CS7	Ability	to	develop	full	stack	applications	using	
one	commonly	used	tech-stack	and	modern	tool.	

G8	An	entrepreneurial	mindset	for	
opportunities	using	technology	and	
innovations.	

CS8		Understanding	of	and	ability	to	use	advanced	
techniques	and	tools	in	a	few	different	domain	areas	
(e.g.	parallel	processing,	image	processing,	IR,	…)	

G9	An	understanding	of	impact	of	solutions	
on	economic,	societal,	and	environment	
context.	

CS9		Exposure	to	emerging	technologies	such	as	
Cloud	Computing,	IoT,	etc	

G10	Strong	emotional	intelligence,	human	
and	cultural	values	

	

	

	

4	

CSE	Core	Courses		
For	 the	BTech	CSE	program,	students	need	to	do	 as	part	of	 their	common	1st	year	curriculum	a	
course	on	programming	(“Introduction	to	Programming”)		and	two	Math	courses.	The	AICTE	1st	year	
curriculum	provides	for	these.		
	
The	list	of	core	courses	recommended	for	CSE	are	given	below.	As	explained	above,	the	core	has	
been	split	into	two	–	essential	and	additional.	The	essential	core	is	what	all	programs	must	have.	
The	additional	core	list	those	courses	which	HEIs	can	choose	to	make	core	or	an	elective,	depending	
on	their	education	approach	and	resources.	
	

Suggested	
Year		

Course	Name	 GAs	it	Contributes	to	(GAs	it	
supports)	

	 Professional	Core	Courses	(Essential)	 	

2nd	year	 Data	structures	and	Algorithms	(DS)	 CS1,	CS2,	CS4	

2nd	year	 Discrete	Mathematics	(DM)	 CS4	(CS2,	CS4,	CS6)	

2nd	year	 Computer	Organization	and	Architecture	(COA)	 CS3	(CS4,	CS6)	

2nd	year	 Advanced	Programming	(AP)	 CS1,	CS3,	CS7,	CS8	(CS2)	

3rd	year	 Operating	Systems	(OS)	 CS3	(CS6,	CS8)	

3rd	year	 Design	and	Analysis	of	Algorithms	(Algo)	 CS1,	CS2,	CS4	

3rd	year	 Database	Systems	(DB)	 CS3,	CS5,	CS6	(CS1,	CS7,	CS9)	

3rd/4th	year	 Computer	Networks	(NW)	 CS3	(CS4,	CS6,	CS8)	

3rd	year	 Machine	Learning	(New)	(ML)	 	

3rd	year	 Security	(New)		 CS1,	CS3,	CS6	

	 Extended	Professional	Core	(Additional)	 	

3rd/4th	year	 Compiler	Design	 	

3rd/4th	year	 Theory	of	Computation	
	

CS4	(CS2)	

	
Detailed	syllabus	of	each	of	these	courses	follows	–	a	separate	subsection	for	each	course.	A	common	
template	has	been	used	 to	 specify	 the	 course	design.	Each	 course	design	 lists	 essential	 learning	
outcomes	for	the	course,	and	desired/advanced	learning	outcomes.	As	the	terms	suggest,	all	HEIs	
should	ensure	that	the	essential	 learning	outcomes	are	achieved.	The	desired/advanced	learning	
outcomes	 are	 those	which	 those	HEIs	which	have	 the	 capabilities	 and	 resources	 to	deliver	may	
include	in	their	courses.	

5	

Coverage	of	CS	Graduate	Attributes	by	the	Core	Courses		
This	 table	 summarizes	which	 CS	 GAs	 different	 courses	 contribute	 to.	 For	 each	 GA,	 list	 of	 main	
courses	is	given	–	these	are	the	courses	which	directly	contribute	to	the	GA.	Also	mentioned	are	the	
courses	which	support	the	GA	(though	perhaps	less	directly):	
	

CS1	Proficiency	in	writing	in	at	least	two	dissimilar	
programming	languages	programs	of	modest	
complexity	which	are:	readable,	tested	for	
correctness,	efficient,	and	secure	

Main	Courses:	DS,	AP,	Algo,	
Security	
	
Supporting	Courses:	DB	

CS2	Ability	to	design	and	apply	appropriate	algorithms	and	
data	structures	for	evolving	efficient	computing	based	
solutions	for	new	problems	

Main:	DS,	Algo	
	
Supporting:	DM,	AP,	ToC	

CS3	Understanding	of	computing	systems	at	computer	
architecture,	operating	systems,	and	distributed-	
computing	levels,	and	how	they	affect	the	performance	of	
software	application	

Main:	CO/CA,	AP,	OS,	DB,	NW,	
Security	
Supporting:		

CS4	Understanding	of	theoretical	foundations,	fundamental	
principles,	and	limits	of	computing	

Main:	DS,	DM,	Algo,	ToC	
Supporting:	NW,	CO/CA	

CS5	Ability	to	analyse	large	volumes	of	data	employing	a	
variety	of	techniques	for	learning,	better	prediction,	
decision	making,	

Main:	DB	
	
Supporting:	DM	

ADVANCED/OPTIONAL	
	
CS6	Ability	to	design,	implement,	and	evaluate	computer	

based	system	or	application	to	meet	the	desired	needs	
using	modern	tools	and	methodologies	

Main:	AP,	DB,	Security	
	
Supporting:	DM,	CO/CA	

CS7	Ability	to	develop	full	stack	applications	using	one	
commonly	used	tech-stack	and	modern	tools	

Main:	AP	
Supporting:	OS,	NW,	Security	

CS8	Understanding	of	and	ability	to	use	advanced	techniques	
and	tools	in	a	few	domain	areas	(e.g.	parallel	processing,	
image	processing,	IR,	…)	

Main:		
	
Supporting:	DB	

CS9	Exposure	to	emerging	technologies	such	as	Cloud	
Computing,	IoT,	etc	

Main:		
Supporting:	DB,	Security,	NW	

	

Micro	Specializations	(and	Professional	Electives)	
Besides	the	core	courses,	programs	normally	have	professional	elective	courses,	which	HEIs	decide.	
It	 is	possible	to	use	the	electives	to	provide	a	limited	specialization	in	some	sub-area	of	CSE	to	a	
BTech	 student.	 We	 call	 these	 as	 micro-specializations.	 These	 also	 allow	 multiple	 pathways	 to	
students,	 as	 different	 students	 can	 graduate	 with	 different	 specializations	 (or	 not).	 A	 micro	

6	

specialization	is	a	set	of	a	few	full	or	half	courses,	which	build	upon	the	core	CSE	program.	The	report	
gives	possible	structure	of	a	few	micro	specializations	in:	
	

● Software	Engineering	
● Machine	Learning	
● Distributed	and	Cloud	Systems	
● Human	Computer	Interaction	(HCI)	

	
More	 specializations	 definition	 may	 be	 added	 (e.g.	 in	 Security,	 High	 Performance	 Computing,	
Algorithms).	Micro	specializations	are	optional	for	HEIs	–	i.e.	they	can	decide	to	offer	them	or	not,	
and	if	they	do,	which	ones	they	want	to.	If	they	decide	not	to	have	these,	the		list	of	courses	mentioned	
in	the	micro	specializations	can	be	used	as	a	list	of	suggested	professional	electives.		

Recommendations	for	Online	Credits	
A	 sub-committee	 was	 formed	 to	 recommend	 how	 online	 credits	 may	 be	 given	 by	 HEIs.	 The	
recommendations	 are	 given	 as	 part	 of	 the	 report	 as	 an	 appendix.	 The	 recommendations	 were	
accepted	by	the	full	steering	committee.	

Recommendations	for	Multiple	Exits	
A	sub-committee	was	formed	to	recommend	possible	exits	for	a	BTech	CSE	student	–	in	line	with	
one	of	the	goals	of	the	NEP.	The	recommendations	are	given	as	part	of	the	report	as	an	appendix.	
The	recommendations	were	accepted	by	the	full	steering	committee.	

 	

7	

Syllabus	for	CSE	Core	Courses	
This	section	gives	 the	detailed	syllabus	of	all	 the	core	courses	 for	 the	model	CSE	program.	Each	
course	design	states	the	learning	outcomes	–	both	essential	and	desirable	–	and	then	the	modules	in	
the	course	and	topics	in	each	of	the	modules.	The	design	also	suggests	for	each	module	a	suitable	
pedagogy	approach	and	suitable	assignments/labs.	

Data	Structures	and	Algorithms	

CS301	 Data	Structure	&	

Algorithms	
3L:0T:	4P	 5	credits	 Pre-Reqs:	

ESC201	

Learning	outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	the	
end	of	the	course	the	student	shall	have):	

	

Essential	(<=6):	
1. Understanding	abstract	specification	of	data-structures	and	their	implementation.	
2. Understanding	time	and	space	complexity	of	programs	and	data-structures.		
3. Knowledge	of	basic	data-structures,	their	applications	and	relative	merits.		
4. Ability	to	convert	an	algorithmic	solution	to	a	program	using	suitable		data-structures	and	

analyze	the	trade-offs	involved	in	terms	of	time	and	space	complexity.		
	

Desirable/Advanced	(<=	3):	
1. Amortized	complexity	
2. Use	of	randomization	in	data-structures	

	
Detailed	contents	for	Essential	Learning	Outcomes:	

Module	 Topics	 Pedagogy	teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	1:	
Introduction	and	
basic	terminology	

(1	week)	

(i)	Notion	of	data-
structures	and	
algorithms.	

(ii)	𝑙𝑜𝑔𝑛, 𝑛, 2':	
understanding	growth	
of	these	functions,	and	
applications	(binary	
search	and	extensions	
to	similar	problems)	

(ii)	Worst-case,	average-
case	time/space	

T1:	Chapter	3	

(i)	Explain	the	interplay	
between	algorithms	
and	data-structures		

(ii)	Explain	the	
meaning	of	worst	and	
average	case	

(iii)	Examples	of	𝑂(),	
Motivation	behind	
asymptotic	analysis	

(i)	Worst/average	
case	analysis	for	
small	pseudo-codes	

(ii)	Prove/disprove	
why	a	function	𝑓(𝑛)	
is	𝑂,𝑔(𝑛)-	(and	
similarly	for		𝛺).	

(iii)	Variations	on	
binary	search	with	
applications,	
recursive	and	

8	

complexity	and	their	
relative	merits.		

(iii)	Asymptotic	
Notation:	𝑂(), 𝛺()			

	

(large	𝑛	and	ignoring	
constants).		

(iv)	Discuss	recurrence	
relation	for	binary	
search.		

	

iterative	
implementation	of	
binary	search	with	
applications	to	
problems.	

	

	

Module	2:		

Abstract	Data-types,	
Arrays,	Linked	Lists,	
Stacks,	Queues	
Dictionary	ADT,	
Trees,	Binary	Trees		

(2.5	weeks)	

(i)Abstract	data-type	
(ADTs):	arrays	and	
linked	list		ADTs.		

(ii)	Stacks,	Queues:	
ADTs	and	
implementations	using	
arrays,	linked	lists.		

(iii)	Doubly	linked	lists:	
ADT	and	
implementation	

(iv)	Dictionary	ADT:	
implementation	using	
array,	linked	lists,	
binary	search.		

(v)	Tree	ADT	and	
examples	

(vi)	Implementation	of	
trees	and	basic	traversal	
algorithms	

(vii)	Binary	trees	and	
inorder	traversal	

	

T1:	chapter	4,	Chapter	
6	

(i)	Explain	the	
difference	between	
specification	and	
implementation	of	
ADTs.		

(ii)	Discuss	stack	
implementation	using	
arrays	of	fixed	size	and	
linked	list,	and	relative	
merits.		

(iii)	Circular	array	and	
linked	list	
implementation	of	
queues,	and	relative	
merits.		

(iv)	Discuss	some	
applications	of	stacks:	
post-fix	notation,	
matching	parentheses	
etc.		

(v)	Dictionary	ADT:	
discuss	why	neither	
arrays	nor	linked	list	is	
a	good	implementation,	
but	sorted	arrays	are	
good	for	searching.		

(vi)	Discuss	situations	
where	we	need	to	store	
hierarchical	data.		

(vii)	Discuss	pre-order	
and	post-order	,	

(i)	Implementation	of	
stacks	with	
application	to	a	
problem.		

(ii)	Implementation	
of	queues	with	
application	to	a	
problem.		

(i)	Implementation	of	
trees	with	
applications	for	
storing	and	accessing	
hierarchical	data.		

9	

traversals	and	
applications	in	finding	
height	and	similar	
problems.		

Module	3:		
Priority	Queues	and	
Heaps	

	

(1	week)	

(i)	Priority	Queue	ADT	

(ii)	Definition	of	heaps	

(iii)	Implementation	of	
Priority	Queues	using	
heaps	and	running	time	
analysis	

(iv)	Implementation	of	
heaps	using	arrays.		

(v)	Heap-sort	

T1:	Chapter	7.1-7.3	

(i)	Start	with	FindMin	
and	Insert,	and	a	simple	
𝑂(1)	time	and	𝑂(1)	
space	algorithm.	
Buildup	towards	
DeleteMin.	

(ii)	Discuss	algorithm	
for	heaps:	inserting	an	
element,	modifying	an	
element,	and	deleting	
the	minimum	element.	

(iii)	Discuss	why	array	
implementation	is	
more	efficient	than	
balanced	binary	trees	

(i)	Array	
implementation	of	
heaps	and	
application	to	a	
problem.		

(ii)	k-ary	heaps:	
compare	with	binary	
heaps	(both	in	theory	
and	practice)	

Module	4:			
Binary	Search	Trees,	
AVL	Trees,	2-4	trees	

	

(3	weeks)	

(i)	Binary	Search	Trees:	
definition	and	some	
basic	algorithms.		

(ii)	Implementation	of	
Dictionary	ADTs	using	
Binary	Search	trees	and	
running	time	analysis	

(iii)	AVL	trees:	height	
balance	condition,	
rotations,	and	
implementation	of	
dictionary	ADT	

(iv)	2-4	Trees:	Multi-
way	search	trees,	
implementation	of	
dictionary	ADT,	
Informal	discussion	of	
extension	to	B-trees.		

T1:	Chapter	9.1,	9.2,	9.4	

(i)	Discuss	algorithms	
for	finding	predecessor	
or	successor,	and	
similar	problems	in	
Binary	Search	Trees.		

(ii)	Explain	why	height	
of	a	Binary	Search	Tree	
may	not	remain	
𝑂(𝑙𝑜𝑔𝑛).	

(v)	Explain	how	the	
height	balance	
condition	ensures	that	
the	height	is	𝑂(𝑙𝑜𝑔𝑛),	
and	how	rotation	
changes	the	structure	
of	a	tree.		

(vi)	Explain	why	
rotations	in	AVL	trees	

(i)	Implementation	of	
AVL	trees	with	
search,	insert,	delete	
operations	and	
application	to	a	
problem.	Comparison	
with	unbalanced	
Binary	Search	Trees.		

(ii)	Implementation	
of	2-4	trees	with	
search,	insert,	delete	
operations	and	
application	to	a	
problem.		

(iii)	Comparison	of	
the	two	
implementations	
above.		

	

10	

restore	height	balance	
condition		

(vii)	Explain	why	2-4	
trees	have	
𝑂(𝑙𝑜𝑔𝑛)height	and	the	
running	time	of	
insert/delete	
operations.	

(viii)	Discuss	how	
balanced	binary	tree	
data-structures	can	
implement	a	priority	
queue		

Module	5:		
Hash	tables,	tries		

(2	weeks)	

(i)	Map	ADT		

(ii)	Hash	Tables	and	
implementation	of	Map	
using	Hash	Tables	

(iii)	Design	of	hash	
functions	

(iv)	Collision	resolution	
schemes:	chaining,	open	
addressing	schemes	like	
linear	probing,	
quadratic	probing,	
double	hashing.		

(v)	Applications	of	
Hashing:	finding	
duplicates,	set	
intersection,	etc.			

(vi)	Tries:	
implementation	of	Map	
ADT	using	tries.	

(vii)	Compressed	tries	
and	suffix	tries.		

T1:	Chapter	8.1-8.3,	
Chapter	11.3	

(i)	Explain	the	
difference	between	
Map	and	Dictionary	
ADT.		

(ii)	Discuss	how	hash	
functions	can	have	non-
numeric	keys	as	input.		

(iii)	Discuss	the	relative	
merits	of	hash	tables	
and	balanced	binary	
search	trees.		

(iv)	Discuss	how	
hashing	can	be	a	
substitute	for	sorting	in	
many	cases.		

(v)	Explain	why	tries	
can	be	better	than	
balanced	binary	search	
trees	in	some	settings.		

(vi)	Explain	how	
compressed	tries	save	
space	

(vii)	Discuss	real-life	
applications	of	tries.		

(i)	Implementation	of	
hash	tables	with	
applications	to	a	
problem.	

(ii)	Implementation	
of	tries	and	
applications	to	a	
problem.			

11	

Module	6:	
Sorting,	Selection	

(1.5		weeks)	

(i)	Bubble	sort,	
insertion	sort,	selection	
sort.		

(ii)	Merge	sort	and	
divide	and	conquer	
paradigm	

(iii)	Quick	sort:	average	
and	worst	case	analysis,	
randomized	quicksort	
(intuitive	explanation)	

(iv)	Selection	based	on	
partitioning	ideas	used	
in	QuickSort.		

T1:	Chapter	10.1,	10.2,	
10.4,	10.5,	10.7	
(i)	Discuss	why	𝑂(𝑛1)	
time	algorithms	can	be	
useful	sometimes	(
small	data,	data	nearly	
sorted	etc.)	

(ii)	Only	the	recurrence	
for	merge	sort	and	
mention	that	divide-
and-conquer	paradigm	
will	be	explored	more	
in	algorithms	course.		

(ii)	Discuss	the	
randomized	splitting	
algorithm	for	quicksort	
and	selection	and	
explain	intuitively	the	
expected	running	time.		

Implementation	of	
sorting	algorithms	
and	comparison	of	
running	times	on	
large	data-sets.		

Module	7:	
Graphs,	
representations	and	
traversal	algorithms,	
applications	of	BFS,	
DFS	

(2.5	weeks)	

(i)	Graph	ADTs	and	
applications	

(ii)	Adjacency	list	and	
adjacency	matrix	
representations	and	
relative	merits	

(iii)	Basic	graph	
definitions:	paths,	
cycles,	trees,	spanning	
trees,	connected	
components,	Euler’s	
formula.		

(iv)	Depth	First	Search	
Traversal	algorithm	for	
directed	graphs:	
classification	of	edges	
into	forward,	back	and	
cross	edges.	
Applications	to	cycle	
finding,	topological	sort	
in	directed	acyclic	
graphs,	finding	
connected	components.	
Running	time	analysis.		

T1:	Chapter	12.1-12.4	
(i)	Discuss	the	wide	
applicability	of	graphs	
including	social	
networks,	internet.		

(ii)	Discuss	time	and	
space	complexity	of	
basic	operations	using	
adjacency	list	and	
adjacency	matrix.		

(iii)	Discuss	why	trees	
have	𝑛 − 1edges.		

(iv)	Discuss	how	DFS	
can	be	thought	of	as	
exploration	with	
backtracking.	Explain	
the	role	of	stack	in	DFS.		

(v)	Explain	how	BFS	
can	be	thought	of	as	
traversal	along	shortest	
paths	and	
implementation	using	
queues.		

(i)	Graph	
implementation	
using	adjacency	list	
and	DFS/BFS	
traversal	with	
applications.		

12	

(v)	Breadth	first	search	
algorithm:	
implementation	using	
queues,	shortest	path	
tree	property.	Running	
time	analysis	

(vi)		Formal	proof	of	
why	BFS	yields	a	
shortest	path	tree.		

	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):	
Module	 Topics	 Pedagogy	teaching	

suggestions	
Nature	of	lab	/	
assignment	/	
practice	

Module	1:		
Amortized	Complexity	

(1	week)	

(i)	Binary	counter	

(ii)	Binomial	Heaps	

(iii)	Extendible	arrays	

T1:	Chapter	5.1.3,		

R2:	Chapter	17.1	
	
(i)	Explain	the	
motivation	behind	
amortized	analysis.	

(ii)	Analyze	amortized	
complexity	by	explicit	
calculation	of	total	
number	of	operations	
after	𝑛steps.		

(i)	Exercises	on	
amortized	time	
complexity	(e.g.,	a	
queue	using	two	
stacks	etc.)	

(ii)	Implementation	of	
extendible	arrays.		

Module	2:	
Randomization	in	data-
structures	

(1	week)	

(i)	Skip	Lists	

(ii)	Randomized	
quick-sort	

T1:	Chapter	8.4,	10.2	

(i)Explain	the	idea	of	
expectation	of	a	
random	variable.		

(ii)	How	does	
expected	running	time	
translate	to	actual	
running	time	

(iii)Recurrence	for	
expected	running	time	
randomized	quicksort	

(i)	Exercises	on	
calculation	of	
expectation	of	a	
random	variable.		

(ii)	Implementation	of	
skip	lists	and	
comparison	with	AVL	
trees.		

	

	

	Suggested	text	books	/	Online	lectures	or	tutorials:	

13	

	
1. “Data	Structures	and	Algorithms	in	Java”,	by	Michael	T.	Goodrich	and	Roberto	
	Tamassia,	John	Wiley	&	Sons;	3rd	Edition.		

2. “Data	Structures	and	Algorithms	in	Python”,	by	Michael	T.	Goodrich				and						
Robert,Tamassia		,	Wiley,	1st	Edition.	

3. 	In	case	any	other	programming	language	is	used	for	this	course,	some	other	suitable		
text						book	may	be	chosen.		

				

Suggested	reference	books	/	Online	resources:	
	
1. 	NPTEL	video	series,	Data-structures	and	Algorithms,	Instructor:	Naveen	Garg.	

2. 	Introduction	to	Algorithms,	4TH	Edition,	Thomas	H	Cormen,	Charles	E	Lieserson,	Ronald	L	
Rivest	and	Clifford	Stein,	MIT	Press/McGraw-Hill.	

		

	The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:	CS1,	
CS2,	CS4		

Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		
 	

14	

Discrete	Mathematics	
	
CS-X	 Discrete	Mathematics	 3L:1T:	0P	 4	credits	 Pre-Reqs:	0	

Prerequisites	 remark:		
Familiarity	with	some	mathematical	notation,	ideas	and	concepts	covered	at	the	pre-college	levels.	

Learning	Outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	the	

end	of	the	course	the	student	shall	have):	

Essential	(<=6):	

1. Understand	examples	in	Computer	Science	through	mathematical	terminology	and	notation.	
2. Construct	direct,	and	indirect,	proofs	of	basic	theorems.		
3. Understand	the	differences	between	a	mathematical	proof,	a	heuristic,	and	a	conjecture.	
4. Learn	how	to	divide	a	problem,	or	a	proof,	into	smaller	cases.	
5. Formulate	mathematical	claims	and	be	able	to	construct	counterexamples.	
6. Apply	the	knowledge	of	mathematics	to	solve	real-world	problems.	

	Desirable/Advanced	(<=	3):		

1. Identify	formal	algebraic	structures	in	computer	science.	
2. Work	with	probability	&	statistics	in	a	rigorous	ways.	
3. Use	this	course	topics	to	design,	and	rigorously	analyze,	real-life	algorithms.	

	
Detailed	contents	for	Essential	Learning	Outcomes:	
Module	 Topics	 Pedagogy	/	teaching	

suggestions	
Nature	of	lab	/	
assignment	/	
practice	

Module	1:	
Set,	Relations,	
Functions.	

(~1.5	wks)	

Operations	and	Laws	of	
Sets,	Cartesian	Products,	
Binary	Relation,	Partial	
Ordering	Relation,	
Equivalence	Relation,	
Image	of	a	Set,	Sum	and	
Product	of	Functions,	
Bijective	functions,	
Inverse	and	Composite	
Function,	Size	of	a	Set,	
Finite	and	infinite	Sets,	
Countable	and	
uncountable	Sets,	Cantor's	

-	Chapter	1,3	of	T1.	

-	Chapter	2	of	T2	

-	Discuss	some	
examples	from	
computer	science:		

+Uncountability	of	
Reals	

+Uncomputability	by	
the	diagonal	argument	
(ref.	Chap.6	of	T1).		

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

15	

diagonal	argument	and	
The	Power	Set	theorem.	 +Relational	database	

(ref.	Chap.3	of	T1.	
Refer	R8).	

Module	2:		
Proof	strategies.	

(1.5	wks)	

Proof	Methods	and	
Strategies:	Forward	Proof,	
Proof	by	Contradiction,	
Proof	by	Contraposition,	
Proof	of	Necessity	and	
Sufficiency,	Case	analysis,	
Induction.	

-	Chapter	1	of	T1.	

-	Chapter	1	of	T2.	

-	Discuss	some	
examples	from	
computer	science:		

+Examples	like	above.		

!"#$%&$%''()%*+(,-	

+Prime	numbers	are	
infinite	(Chap.4.3	of	
T2).		

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

Module	3:		
Modular	
Arithmetic.	

	

	

(1.5	wks)	

Extended	Euclid’s	Greatest	
Common	Divisor	
algorithm,	The	
Fundamental	Theorem	of	
Arithmetic,	Modular	
arithmetic,	Coprimality	(or	
Euler’s	totient	function),	
Chinese	Remainder	
Theorem.		

-	Chapter	4	of	T2.	
Chapter	1.20	of	T1.	

-	References	T5	&	R5.	

-	Discuss	some	
examples	from	
computer	science:		

+Diffie-Hellman	key-
exchange.	

	+RSA	Cryptosystem.	

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

	

	

Module	4:	
Combinatorics.	

	

(1.5	wks)	

Permutation	&	
Combination,	Inclusion-
Exclusion,	Pigeon-hole	
principle,	Generating	
functions,	Recurrence.	

-	Chapter	2,	8,	9	of	T1.	
Chapter	6	of	T2.		
Chapter	2,	3,	4,	5,	6	of	
T4.	Also	refer	to	R3,	
R4.	

-	Discuss	some	
examples	from	
computer	science:		

+Count	binary	trees.		

+Count	matched	
parentheses.		

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

	

	

16	

+Count	matrix	chain	
multiplication.		

Module	5:		
Graphs.	

	

(1.5	wks)	

Connected	components,	
Paths,	Cycles,	Trees,	
Hamiltonian/	Eulerian	
Walks,	Coloring,	Planarity,	
Matching.		

-	Chapter	4,	5	of	T1.	
Chapter	10,	11	of	T2.	

-	Discuss	some	
examples	from	
computer	science:		

+Shortest-distance	
(Chapter	7	of	T1).	

+Minimum	spanning	
tree.		

+Prefix	codes.		

+Graph	isomorphism	
problem.	

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

	

Module	6:		
Logic.	

	

(1.5	wks)	

Languages	of	
Propositional	logic	and	
First-order	logic,	
expressing	natural	
language	sentences	in	
languages	of	propositional	
and	first-order	logic,	
expressing	natural	
language	predicates	in	the	
language	of	first-order	
logic.	Semantics	of	First-
order	logic:	interpretation	
and	its	use	in	evaluating	a	
formula.		

Optional	advanced	topics	
if	there	is	extra	time:	

Semantic	entailment,	
Validity	and	Satisfiability.		
What	is	a	proof	system?	
Eg.	natural	deduction	or	
analytical	tableau.	Notions	
of	Consistency	and	
Completeness	of	a	logic.		

	

-	Chapter	1,	11	of	T1.	
Chapter	1,	12	of	T2.	
Also	refer	to	R2.	

-	Discuss	some	
examples	from	
computer	science	
(also,	refer	T3):	

+SAT	solvers	and	why	
these	are	so	useful.		

+Relational	Calculus.		

+Language	for	
specification	like	Z.	

+Hoare	logic	for	
program	verification.	

Make	assignments	
using	the	books.	To	
test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	
student	can	think	and	
apply	the	concepts.	

	

17	

	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):		

Module		 Topics	 Pedagogy	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	practice	

Module	7:	
Algebra.	

	

(1.5	wks)	

Group,	Permutation	Groups,	
Cosets,	Normal	Subgroups,	Ring,	
Field,	Finite	fields,	Fermat’s	little	
theorem,	Homomorphisms,	
Isomorphisms.		

-	Chapter	10		of	
T1.	Also,	refer	
R5,	R6.	

-	Discuss	some	
examples	from	
computer	
science	(ref.	T3):	

+RSA	
Cryptosystem.		

+Reed-Solomon	
error-correction	
encoding.	

Make	assignments	
using	the	books.	To	test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	student	
can	think	and	apply	the	
concepts.	

Module	8:	
Discrete	
probability.	

	

(1.5	wks)	

Topics	to	be	taught	from	the	
viewpoint	of	CS	instead	of	Maths:	

Discrete	Sample	Space,	
Probability	Distribution,	Random	
variables,	Expectation,	Variance,	
Bernoulli	trials,	Conditional	
probability	&	independence	
(Bayes’	Theorem).	

-	Chapter	2	of	
T1.	Chapter	7	of	
T2.	

-	Discuss	some	
examples	from	
computer	
science	(also	
refer	R7):	

+Randomized	
algorithms.	

+Heuristics.	

Make	assignments	
using	the	books.	To	test:		

(1)	what	was	done	in	
the	class		

(2)	whether	the	student	
can	think	and	apply	the	
concepts.	

Suggested	text	books	/	Online	lectures	or	tutorials:	

T1. Liu,	C.	L.,	&	Mohapatra,	D.	P.	(2008).	Elements	of	Discrete	Mathematics.	Tata			McGraw-Hill.	

T2. Rosen,	 K.	 H.	 (2019).	 Discrete	 Mathematics	 and	 Its	 Applications.	 	 (8th	 Edition)	 ISBN10:	
125967651X	ISBN13:	9781259676512.	

T3. 	Huth,	M.,	&	Ryan,	M.	 (2004).	Logic	in	Computer	Science:	Modelling	and	Reasoning	about		
	Systems	(2nd	ed.).	Cambridge	University	Press.		

T4. 	Cohen,	D.	I.	A.	(1978).	Basic	techniques	of	combinatorial	theory.	John	Wiley.	

18	

T5. 	Niven,	I.,	Zuckerman,	H.	S.,	&	Montgomery,	H.	L.	(1991).	An	introduction	to	the	theory	of	
	numbers.	John	Wiley	&	Sons.	

	

Suggested	reference	books	/	Online	resources:	

R1. Norman	L.	Biggs,	Discrete	Mathematics,	(2nd	ed.	2002),	Oxford	University																		Press.	

R2. Smullyan,	R.	M.	(1995).	First-order	logic.	Courier	Corporation.	

R3. Bóna,	M.	(2006).	A	walk	through	combinatorics:	an	introduction	to			 	
	 enumeration	and	graph	theory.	

R4. Cameron,	P.	J.	(1994).	Combinatorics:	topics,	techniques,	algorithms.	Cambridge		
	 University	Press.	

R5. Shoup,	V.	(2009).	A	computational	introduction	to	number	theory	and	algebra.		
	 Cambridge	University	Press.	

R6. Herstein,	I.	N.	(2006).	Topics	in	algebra.	John	Wiley	&	Sons.	

R7. Mitzenmacher,	M.,	&	Upfal,	E.	(2017).	Probability	and	computing:	Randomization		
	 and	probabilistic	techniques	in	algorithms	and	data	analysis.	Cambridge	University	
Press.	

R8. C.	J.	Date	(2019).	Database	Design	and	Relational	Theory.	Normal	Forms	and	All		
	 That	Jazz.	

	
	
Prepared	by:	
		

1. Somenath	Biswas,	Computer	Science	&	Engineering	Department,	IIT	Goa	(Retd.	IIT	Kanpur)	
2. Partha	 Mukhopadhyay,	 Theoretical	 Computer	 Science	 Group,	 Chennai	 Mathematical	

Institute	
3. Nitin	Saxena,	Computer	Science	&	Engineering	Department,	IIT	Kanpur	
4. Bhabani	P.	Sinha,	Advanced	Computing	&	Microelectronics	Unit,	Indian	Statistical	Institute	

Kolkata	
	

	
The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:		CS4	
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		CS2,	CS5,	CS6		
	
	
 	

19	

Computer	Organization	&	Architecture	
CS402	 Computer	

Organization	&	
Architecture	

3L:0T:	4P	 5	credits	 Pre-Reqs:	
ESC302	

Learning	Outcomes		of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	
the	end	of	the	course	the	student	shall	have):	
	
Essential	(<=6):	
	

1. The	key	components	of	a	basic	computer.	
2. The	key	components	of	a	CPU	and	how	the	instructions	are	executed.	
3. Execution	and	time	taken	by	instructions	in	a	pipelined	processor.	
4. The	need	for	memory	hierarchy	and	efficiency	achieved	due	to	the	use	of	cache.	
5. How	the	data	is	stored	and	input-output	is	performed	in	computers.	

	
Desirable/Advanced	(<=	3):	
	

1. Super-scalar	and	multi-core	architectures	for	crossing	one	clock	per	instruction	barrier		
2. Cache	data	coherence	related	challenges	in	multi-core	processors	

	

Detailed	contents	for	Essential	Learning	Outcomes:		

Module	(appx	dur	
in	wks)	

Topics	 Pedagogy	/	teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	1:	
Introduction	
(Lectures	6)	

(Weeks	2)	

Role	of	abstraction,	
basic	functional	units	
of	a	computer,	Von-
Neumann	model	of	
computation,	A	note	
on	Moore’s	law,	Notion	
of	IPC,	and	
performance.	Data	
representation	and	
basic	operations.	

T1:	Chapter	1	

R1:	Chapter	1(Section	
1.7.2)	

R3:	Chapter	1	

R2:	Chapter	3	

	

Module	2:	
Instruction	Set	
Architecture	(RISC-
V)	

(Lectures	8/9)	

(Weeks	3)	

CPU	registers,	
instruction	format	and	
encoding,	addressing	
modes,	instruction	set,	
instruction	types,	
instruction	decoding	
and	execution,	basic	

R1:	Chapter	3,	5	

R3:	Chapter	2,	Chapter	
5	(Section	5.1	to	5.5)	

R7:	Chapter	3	

Lab	Modules	1	and	4	

20	

instruction	cycle,	
Reduced	Instruction	
Set	Computer	(RISC),	
Complex	Instruction	
Set	Computer	(CISC),	
RISC-V	instructions;	
X86	Instruction	set.	

Module	3:		
The	Processor	

(Lectures	6)	

(Weeks	2)	

Revisiting	clocking	
methodology,	
Amdahl’s	law,	Building	
a	data	path	and	
control,	single	cycle	
processor,	multi-cycle	
processor,	instruction	
pipelining,	Notion	of	
ILP,	data	and	control	
hazards	and	their	
mitigations.	

	

T1:	Chapter	1,	4	

R3:	Chapter	6	

Lab	Modules	2	and	4	

Module	4:	
Memory	hierarchy	

(Lectures	8/9)	

(Weeks	3)	

SRAM/DRAM,	locality	
of	reference,	Caching:	
different	indexing	
mechanisms,	Trade-
offs	related	to	block	
size,	associativity,	and	
cache	size,	Processor-
cache	interactions	for	
a	read/write	request,	
basic	optimizations	
like	write-
through/write-back	
caches,	Average	
memory	access	time,	
Cache	replacement	
policies	(LRU),	
Memory	interleaving.	

T1:	Chapter	5	

R3:	Chapter	8	

	

Lab	Module	2	

Module	5:		
Storage	and	I/O	

(Lectures	6)	

(Weeks	2)	

Introduction	to	
magnetic	disks	(notion	
of	tracks,	sectors),	
flash	memory.		I/O	
mapped,	and	memory	
mapped	I/O.	I/O	data	
transfer	techniques:	
programmed	I/O,	

R5:	Chapter	5	(Section	
5.4)	

Chapter	6	(Section	6.1)	

Chapter	7	(Section	7.1	
-7.5)	

	

Lab	Modules	3	and	5	

21	

Interrupt-driven	I/O,	
and	DMA.	 	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):		

Module		 Topics	 Pedagogy	teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	6:	
Superscalar	
processors	and	
multicore	systems	

(Lectures	6)	

(Weeks	2)	

Limits	of	ILP,	SMT	
processors,	
Introduction	to	
multicore	systems	
and	cache	coherence	
issues	

Lab Modules 1 and 4 	

	
	
	
Laboratory	Modules	
The	laboratory	component	consists	of	5	modules	out	of	which	three	can	be	chosen	based	
on	the	overall	curriculum	and	its	emphasis.	Modules	4	and	5	assume	that	students	have	a	
background	in	using	FPGA	kits	in	their	Digital	Electronics	course	(ESC302)	and	have	also	
been	introduced	in	programming	in	one	of	the	HDLs	(VHD	or	Verilog).	
	
Possible	three	options	are:	

1. Module	1	+	Module	2	+	Module	3	
Instructions	&	assembly	language	+	basic	performance	+	advanced	performance	
analysis		

2. Architecture	+	Module	1	+	Module	2	+	Module	4	
Instructions	&	assembly	language	+	basic	performance	+	basic	processor	design	
Module	1	+	Module	4	+	Module	5	

3. Instructions	&	assembly	language	+	basic	processor	design	+	I/O	and	architecture	
enhancements.	

	
Detailed	contents	for	Essential	Learning	Outcomes:		
	

Module	(appx	dur	in	wks)	 Topics	 Comments	

Module	1:	

(Weeks	4)	

Write	programs	in	ARM/RISC	V	assembly	
language	and	test	these	on	an	instruction	
set	simulator.	Typical	examples	are	given	
below.	Some	of	these	are	dependent	on	
I/O	facilities	provided	by	the	simulator.	

Essential	
component	

22	

Objective:	Understanding	
architecture	and	instructions	
through	assembly	programming	

● Generate	some	interesting	
numbers	(example	-	Happy	
numbers,	Autonomic	numbers,	
Hardy-Ramanujan	numbers	etc.)	

● Implement	a	4-function	calculator	

● Sort	an	integer	array	using	merge	
sort	(recursive)	

● Evaluate	an	arithmetic	expression	
specified	as	a	string	(using	
recursive	functions)	

● Implement	a	simple	game	

Module	2:	

Understanding	performance	
issues	related	to	pipelining	and	
cache	using	architectural	
simulator	

(Weeks	4/5)	

Usage	of	a	instruction	pipeline	
visualization	tool	like	RIPES	

Write	or	generate	sequence	of	
instructions	and	observe	the	overall	
pipeline	stalls	with	and	without	data	
hazards,	control	hazards,	and	
with/without	data	forwarding.	

	

Rearrange	the	sequence	of	instructions	or	
the	program	so	that	the	pipeline	stalls	will	
be	minimized.	

Optional	

Module	3:	

Understanding	memory	access	
patterns	and	changing	basic	
cache	memory	parameters	to	
analyze	the	impact	of	standard	
programs	or	benchmarks	using	
architectural	simulators.	

	

(Weeks	3)	

Configure	the	simulator	[gem5	is	
preferred]		to	operate	on	the	binaries	of	
the	benchmark	as	the	input.	

Run	the	program	and	examine	the	IPC,	
cache	hit	rate,	number	of	conflict	misses	
and	block	replacements.	

Vary	the	cache	size,	block	size,	and	
associativity	and	analyze	the	metrics	and	
reason	the	changes	observed.	

Modify	the	block	replacement	algorithms	
and	see	the	impact	at	cache	memory	
performance	

Calculate	the	access	time,	power	and	are	
associated	with	a	given	cache	
configuration.	

Optional:	

Familiarity	with	
tools	like	GEM5,	
CACTI	and	PIN,	
and	access	to	
benchmarks	like	
SPEC,	PARSEC,	
SPLASH.	

	

Any	other	
tools/simulators	
that	can	support	
memory	pattern	
analysis	is	also	
fine.	

23	

Vary	the	cache	size,	block	size,	and	
associativity	and	analyze	the	metrics	and	
reason	the	changes	observed.	

Module	4:	

(Weeks	4/5)	

Objective:	Understanding	
computer	architecture	by	
designing	a	CPU	on	FPGA	kit	

Design	a	simple	ARM/RISC	V	processor	
for	a	small	subset	of	instructions	and	
implement	on	FPGA	board.	This	is	done	in	
stages	as	follows.	

● Design	CPU	for	the	instruction	subset	
{add,	sub,	cmp,	mov,	ldr,	str,	beq,	bne,	
b},	with	each	instruction	executing	in	a	
single	cycle.	No	sequential	control	
required.	For	each	instruction,	only	a	
limited	set	of	variants	are	considered.	

● Use	memory	generator	to	add	program	
and	data	memories.	

● Include	circuit	for	single	step	execution	
and	for	displaying	signals	of	interest.	

● Modify	the	design	to	allow	multi-cycle	
execution	of	instructions.	

● Enhance	the	design	to	include	all	DP	
instructions	and	all	variants	of	the	
second	operand.	

Optional	

Prerequisite:	

Use	of	FPGA	kits	
as	well	as	
exposure	to	
VHDL/Verilog	

Module	5:	

Objective:	Understanding	
computer	architecture	
performance	issues	as	well	as	
I/O		through	architectural	
enhancements	(on	FPGA)	

(Weeks	4/5)	

Extension	of	the	CPU	design	and	I/O	
programming	

● Enhance	the	design	to	include	all	
variants	of	DT	instructions.	

● Implement	multiply	group	of	
instructions.	

● Enhance	the	design	to	implement	
"branch	and	link"	instruction	and	
include	full	predication.	

● Include	limited	exception	handling.	

● Interface	7-segment	display	and	4x4	
keypad.	

● Demonstrate	execution	of	simple	
programs.	

Optional	

Prerequisite:	

Use	of	FPGA	kits	
as	well	as	
exposure	to	
VHDL/Verilog	

	

24	

Suggested	text	books	/	Online	lectures	or	tutorials:	

T1	 	 “Computer	 Organization	 and	 Design:	 The	 Hardware/Software	 Interface”,		 David	 A.				
Patterson	and	John	 L.	 Hennessy,	 5th	 Ed,	 Elsevier.	
	

Suggested	reference	books	/	Online	resources:	

R1					“Computer	Organisation	&	Architecture”,	Smruti	Ranjan	Sarangi,	McGraw	Hill	

R2					“Computer	System	Architecture”,	Mano	M.	Morris,	Pearson.		

R3		 	 	“Computer	Organization	and	Embedded	Systems”,	6th	Edition	by	Carl	Hamacher,	McGraHill																			
Higher	Education	

R4					“Computer	Architecture	and	Organization”,	3rd	Edition	by	John	P.	Hayes,	WCB/McGraw-Hill	

R5	 	 “Computer	 Organization	 and	 Architecture:	 Designing	 for	 Performance”,	 10th	 Edition	 by									
William	Stallings,	Pearson	Education.	

R6			“Computer	System	Design	and	Architecture”,	2nd	Edition	by	Vincent	P.	Heuring	and	Harry	F.	
Jordan,	Pearson	Education.	

R7					http://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf	

Online	simulators	and	tools:	

RIPES:	https://freesoft.dev/program/108505982	

GEM5:	https://www.gem5.org/documentation/learning_gem5/introduction/	

CACTI:	https://github.com/HewlettPackard/cacti	

PIN:	https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-binary-
instrumentation-tool-downloads.html	

TEJAS:	https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html	

XILINX	(VHDL/Verilog	tools):	https://www.xilinx.com/support/university/students.html	
	
Prepared	by:		

1. Prof.	Anshul	Kumar,	IIT	Delhi	
2. Prof.	Anupam	Basu,	IIT	Kharagpur/NIT	Durgapur	
3. Prof.	Indranil	Sengupa,	IIT	Kharagpur	
4. Prof.	Biswabandan	Panda,	IIT	Bombay	
5. Prof.	John	Jose,	IIT	Guwahati	
6. Prof.	M.	Balakrishnan,	IIT	Delhi	

	
The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	
significantly:	CS3	(and	also	to	some	graduate	attributes	for	ECE)	
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		CS4,	CS6	
 	

25	

Advanced	Programming	
	
CS-X	 Advanced	Programming	 3L:1T:	0P	 4	credits	 Pre-Reqs:	0	

Familiarity	with	data	structures,	and	introduction	to	programming.		

Learning	Outcomes	of	the	course	(i.e.,	statements	on	students’	understanding	and	skills	at	

the	end	of	the	course	the	student	shall	have):	

Essential	(<=6):		

1. Understanding	the	build	system:	IDE,	tools	for	testing,	debugging,	profiling,	and	source		
code			management.		

2. Students	are	able	to	demonstrate	proficiency	in	object-oriented	programming	.	
3. Identify	and	abstract	the	programming	task	involved	for	a	given	programming	problem.	
4. Learning	and	using	language	libraries	for	building	large	programs.	
5. Ability	to	apply	defensive	programming	techniques	(e.g.,	assertions,	exceptions).	

	Desirable/Advanced:	

1. 	Ability	to	implement	basic	event-driven	programming.	
2. 	Understanding	of	the	fundamentals	of	parallel	programming.	
3. 	Understanding	of	the	basics	of	cloud	computing.	

	

Detailed	contents	for	Essential	Learning	Outcomes:	

Module	(appx	
dur	in	wks)	

Topics	 Pedagogy/te
aching	
suggestions	

Nature	of	lab	/	assignment	/	
practice	

Module	1:	
Familiarity	with	
the	
programming	
environment			

(~1	wks)	

Understanding	the	build	
system,	IDE,	debugging,	
profiling	(Eclipse	TPTP	/	
gprof	/	VTune	etc.),	and	
source	code	management	

	R5;	 Familiarity	with	
terminal/command	prompt,	
using	git	commands	and	
github	to	
pull/commit/push/merge	
code,	writing,	compiling	and	
running	simple	programs,	
debugging	by	setting	
breakpoints	

26	

Module	2:	Basic	
principles	of	the	
object-oriented	
development	
process	

		

(~1.5	wks)	

Introduction	to	Object-
Oriented	Paradigm:	Data	
encapsulation,	modularity,	
code	reuse,	identifying	classes,	
attributes,	methods	and	
objects,	class	relationships		

Chapters	2-3,	
T1;		

Chapter	10,	
T2;	

Chapter	7,	R;	

Chapters	11-
12,	R1;	

Importing	pre-written	classes	
using	the	this	keyword,	calling	
and	defining	methods,	writing	
and	instantiating	classes,	
setter/getter	methods,	
instance	variables,	returning	
values,	debugging	using	print	
function,	containment	and	
association,	scope	and	
parameter	passing	

Module	3:	
Advanced	
features	of	OOP	

	

		(~	3	wks)	

Interfaces,	inheritance,	
polymorphism,	abstract	
classes,	immutability,	copying	
and	cloning	objects	

Chapters	2-3,	
T1;		

Chapter	10,	
T2;	

Chapter	7,	R4;	

Chapters	11-
12,	R1;	

Parameter	polymorphism,	
method	resolution,	declared	
v/s	actual	type,	partially	and	
fully	overriding	methods,	
calling	superclass	constructor	
from	child	class	constructor,	
protected	fields	and	methods,	
using	an	abstract	parent	class	
v/s	an	interface	with	default	
and	abstract	methods,	object	
equality	check,	object	
comparison	
(Comparable/Comparator	
interface),	Cloneable	
interface/copy	constructor	

Module	4:	Unit	
testing	

	(~0.5	wks)	

Unit	testing,	developing	test	
suite	

R6;	

R7;	

JUnit/Boost.test	testing	
framework,	assertion	
methods,	testcase	timeout,	
testing	for	exceptions,	test	
suite	

Module	5:	
Using	language	
APIs	

(~1	wks)	

Language	supported	libraries	
for	handling	advanced	data	
structures		

Section	13.2,	
T2;	

Section	13.7,	
R1;	

Big-O	notation,	Java	collection	
framework	(or	Boost	
libraries),	sorting	objects,	
iterating	over	objects	

Module	6:	

Defensive	
programming	

(~1	wks)	

Exception	handling,	assertions	 Section	9.4,	
T2;	

Chapter	14,	
R1;	

Section	2.7,	
R4;	

Exception	handling	using	
try/catch	block,	nesting	
try/catch	blocks,	throw	and	
throws	keywords,	rethrowing	
exceptions,	handling	checked	
exception,	user	defined	
exceptions		

27	

Module	7:	

Modeling	and	
Design	patterns	

	

(~2	wks)	

Basic	modeling	techniques	–	
eg.	Class	diagram,	sequence	
diagram,	use	case	diagrams,	
etc.	Introduction	to	design	
patterns:	iterator,	singleton,	
flyweight,	adapter,	strategy,	
template,	prototype,	factory,	
façade,	decorator,	composite,	
proxy,	chain	of	responsibility,	
observer,	state)	

Chapter	5,	T1;	

Chapters	3-9,	
R3	

UML	may	be	used	for	
modeling.	

	
Suggested	text	books:	
	
T1.		Grady	Booch,	Robert	A.	Maksimchuk,	Michael	W.	Engle,	Bobbi	J.	Young,	Jim	Conallen,	Kelli	A.	
Houston.	Object-Oriented	Analysis	and	Design	with	Applications.	

T2.			M.	Scott.	Programming	Language	Pragmatics.	4th	edition.	

Suggested	reference	books	/	Online	resources:	

- R1.		R.	Sebesta.	Concepts	of	Programming	Languages.	10th	edition	

- R2.		J.	Rumbaugh	et	al.	The	Unified	Modeling	Language	Reference	Manual.	

- R3.	 Erich	 Gamma,	 Richard	 Helm,	 Ralph	 Johnson,	 John	 Vlissides,	 and	 Grady	 Booch.	 Design		
Patterns:	Elements	of	Reusable	Object-Oriented	Software.	

- R4.	P.	Van	Roy	and	S.	Haridi.	Concepts,	Techniques,	and	Models	of	Computer					
Programming.		

- R5.			https://missing.csail.mit.edu/	

- R6.			https://www.baeldung.com/junit	

- R7.			https://www.tutorialspoint.com/junit/index.htm		

- R8.			For	UML	tools,	open	source	tools	may	be	used	(e.g.	www.starUML.io,	argouml.tigris.org/)	
			
	

	
 	

28	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):	

Option-1:	Ability	to	implement	basic	event-driven	programming-	

Module	 Topics	 Pedagogy	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	practice	

Module-1:	
Introduction	to	
event-driven	
programming		

(~1	wks)	

Adding	UI	controls,	GUI	
events,	event	handling	

O1;	

Chapter	10,	O2;	

Create	GUI	
forms/application	with	
different	GUI	components	
(buttons,	text	boxes,	etc.),	
responding	to	user	input	by	
creating	event	handlers,	
productivity	in	creating	
event	handlers	using	
anonymous	classes	and	
lambda	methods	

Module-2:	
Advanced	GUI	
programming	

(~2	wks)	

Creating	animations,	
connection	with	the	database	

O1	 Implement	simple	2-D	game	
that	uses	animations	
(timelines,	moving	shapes),	
client-server	programming	
(multiplayer	game),	object	
serialization/deserializatio
n	(save/reload	game)	

	

Suggested	text	books	/	Online	lectures	or	tutorials:	

1. Oracle	documentation:	https://docs.oracle.com/javase/8/javase-clienttechnologies.htm		

2. P.	Van	Roy	and	S.	Haridi.	Concepts,	Techniques,	and	Models	of	Computer	Programming.		

	

	

	

	

	

29	

	

Option-2:	Understanding	of	the	fundamentals	of	parallel	programming		

Module	 Topics	 Pedagogy	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	practice	

Module-1:	
Introduction	 to	
multithreading	

(~1	wks)	

Ahmdal’s	 law,	 speedup,	
parallel	 efficiency,	 thread	
creation	

	

Chapters	 2	 and	 4,	
T2;	

Creating	 and	 joining	
threads,	 concurrency	
decomposition,	 assigning	
tasks	 to	 threads,	 calculate	
parallel	 speedup	 and	
efficiency,	 debugging	
multithreaded	programs	

Module-2:	
Thread	pool		

(~1	wks)	

Task	parallelism	and	thread	
pools	 (e.g.,	 Java	 ForkJoin	
framework,	
OpenMP/CilkPlus/TBB	 in	
C++)	

Section	13.2,	T1;	

Section	13.7,	R1;	

Asynchronous	task	creation	
and	 joining,	 task	
parallelism	 for	 recursive	
parallelism,	 task	
dependency,	 controlling	
task	granularity,	comparing	
performance/productivity	
of	 explicit	 multithreading	
v/s	using	thread	pools	

Module-3:	
Mutual	
exclusion		

(~1	wks)	

Race	 conditions,	 deadlocks,	
producer-consumer	
problem	

Chapter	13,	T1;	

Chapter	4,	T2;	

Chapter	13,	R1;	

Chapter	8,	R2;	

	

	

Multithreaded	 program	 to	
push/pop	 items	 from	
shared	 queue	 -	 using	
monitor/Mutex	 locks,	
conditional	 wait	 and	
signalling,	volatile	keyword	

	
 	

30	

Suggested	text	books	/	Online	lectures	or	tutorials:	

T1.	M.	Scott.	Programming	Language	Pragmatics.	4th	edition	

T2.	P.	Pacheco.	An	Introduction	to	Parallel	Programming.		

Suggested	reference	books	/	Online	resources:	

	R1.	R.	Sebesta.	Concepts	of	Programming	Languages.	10th	edition	

	R2.	P.	Van	Roy	and	S.	Haridi.	Concepts,	Techniques,	and	Models	of	Computer	Programming.		

	

Option-3:	Understanding	of	the	basics	of	cloud	computing	

Module	 Topics	 Pedagogy	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	practice	

Module	1:	

Basic	concepts	
plus	a	
distributed	
programming	
framework	
such	as	
MR/Spark	

(2		weeks)	

Basics,	Need,	
Advantages/Benefits,	models	
such	as	PaaS/Saas/IaaS/,	
distributed/cloud	computing	
architectures	

Programming	frameworks	such	
as	Map-Reduce	or	Spark,	how	
to	write	programs	in	these	
programs,	features	such	as	
fault-tolerance,	using	
commodity	hardware,	

T1,	Ch.	1,	2,	3	

	

Illustrate	the	
differences	
between	M-R	
style	
programming	
and	C-style	
programming	

Set	up	some	pre	installed	
programs	and	
infrastructure	to	see	how	
to	run	programs	in	the	
cloud.			

Programming	in	Map-
Reduce/Spark	to	study	
scalability.	Typical	
problems	are	from	matrix	
multiplication,	text	
processing,		graphs	,	web	
crawling,	and	the	like	

Module	2:	

(1	week)	

Key	challenges	in	
cloud/distributed	computing:	
communication	vs	
computation/	problem		
decomposition/	failures/	etc.	
and	analyze	the	
communication	required	of	
basic	algorithms	such	as	matrix	
multiplication	

T2,	Ch	3.	

T3,	Ch	1	

Redo	exercises	from	week	
2	to	measure	
communication	time	

	

	

31	

Suggested	text	books	/	Online	lectures	or	tutorials:	

T1:	 Data-Intensive	 Text	 Processing	 with	MapReduce,	 Jimmy	 Lin	 and	 Chris	 Dyer,	 	 Morgan	 &	
Claypool	Publishers,		2010.	

T2:	Parallel	Computer	Architecture,	David	Culler,	J.	P.	Singh,	and	A.	Gupta,	Elsevier,	1998.	

T3.	Distributed	Computing:	Principles,	Algorithms,	and	Systems,	A.D.	Kshemkalyani,	M.	Singhal,	
Cambridge	University	Press,	March	2011.	

				

Prepared	by:	

1. Vivek	Kumar,	Computer	Science	&	Engineering	Department,	IIIT	Delhi	

2. Kishore	Kothapalli,	Computer	Science	&	Engineering	Department,	IIIT	Hyderabad	

3. Swarnendu	Biswas,	Computer	Science	&	Engineering	Department,	IIT	Kanpur		
		

The	Discipline	Graduate	Attributes	to	which	this	course	contributes	significantly:	CS1,	CS3,	CS7,	

CS8	

Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:	CS2	

	

	

 	

32	

Operating	Systems	
	

PCC-	CS403	 Operating	Systems	 3L:0T:	4P	 5	credits	 Pre-Reqs:	PCC–CS402	

	
Prerequisites	details:	

1. Familiarity	with	the	C/C++	programming	language		
2. PCC	402:	Computer	Organization	and	Computer	Architecture	
3. CS403	to	be	scheduled	in	semester	after	CS402		

(both	courses	not	to	be	scheduled	in	the	same	semester)	
	

Learning	Outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	
the	end	of	the	course	the	student	shall	have):	

Essential	(<=6):	
1. To	understand	the	role,	functionality	and	layering	of	the	systems	software	components	
2. To	understand	the	design	and	usage	of	the	OS	API	and	OS	mechanisms	
3. To	understand	the	details	of	the	abstractions	and	interfaces	provided	by	the	OS	for	

program	execution	and	execution	requirements	---	processes,	threads,	memory	
management,	files.	

4. To	understand	problems	arising	due	to	concurrency	and	related	synchronization	based	
solutions.	

5. Hands-on	and	practical	experience	with	usage	of	the	OS	API	and	basics	of	OS	mechanisms	
	

Desirable/Advanced	(<=	3):	
1. To	gain	an	in-depth	understanding	of	the	design	and	implementation	of	OS	

internals	via	a	teaching	OS	
2. To	be	able	to	implement	incremental	changes	to	the	functionality	of	a	teaching	OS	

	
Detailed	contents	for	Essential	Learning	Outcomes:		

Module	(appx	
dur	in	wks)	

Topics	 Pedagogy	/	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	practice	

Module	1:	
Introduction	to	
Operating	
Systems	

(0.5		week)	

Application	requirements	

The	systems	stack	and	role	of	OS,		
resources,	abstractions	and	
interfaces	
	
Components	overview	of	an	OS	

Examples	of	different	types	of	
OSes	(RTOS	vs.	desktop	vs.	mobile	
etc.),	OS	and	OS	distributions.	

T1:	Chapter	2		
T2:	Chapters	1,	2	
T3:	Chapter	1	

	
R1:	Chapter	1	
R2:	Chapters	1,	2	

R4:	Chapter	1	

R7:Chapter		1	
R8:	Chapters	1	to	
8	

1.	Usage	of	tools	---	
unix	shell	commands	
(file	commands,	ps,	ls,	
top),	text	editor	(nano,	
vi,	gedit,	emacs)	
	

2.	C	programming	
language	refresher	---	
header	files,	
compilation	and	
linking	using	gcc,	
program	execution,	

33	

O1:	Bash	Guide	
for	Beginners	

functions,	argument	
passing,	structures,	
pointers,	file	handling.	

Module	2:	
Computer	
organization	
and	computer	
architecture	
refresher	

(0.5		week)	

Basic	organization	of	hardware	
components		
	
Role	of	OS	relative	to	hardware	
functionality	with	examples	
related	to	the	von	Neumann	
architecture	

	

T2:	Chapter	1	
T3:	Chapter	1	

R1:	Chapter	1	
R2:	Chapters	1,	2	
	
O1:	Bash	Guide	
for	Beginners	

1.	Usage	of	tools	---	gcc,	
gdb,	objdump,	shell	
scripts	

	

	

Module	3:	

Processes	
	

(1.5		weeks)	

Process	abstraction	---	program	
vs.	process,	Process	Control	Block	
(PCB)	

Design	of	system	calls	---	
invocation	and	basic	OS	handling	

Process	control	system	calls	---	
fork,	wait,	exec,	getpid,	getppid	
and	variants	

The	limited	direct	execution	
model	

T1:	Chapters	
4,5,6	
	
T2:	Chapters	6,	7	

	

T3:	Chapters	7,	8	

1.	Simple	strace	usage	
to	showcase	different	
interfaces	(stdlib,	
system	call)	

2.	Tools	usage	---	ps,	
pstree,	top	

3.	Usage	of	process	
control	system	calls	to	
identity	process	
identifiers,	create	
process	hierarchies,	
launch	new	
executables,	control	
exit	sequence	of	parent	
and	child	processes.		

4.	Familiarity	with	files	
in	the	/proc/<pid>/	
directory	

Module	4:	
Memory	
management		
	
(3	weeks)	

Address	bus	and	memory	access	

Memory	view	of	a	process	----	
heap,	stack,	code,	data	

Process	memory	usage	
requirements		

The	address	space	abstraction	
using	virtual	memory	and	related 	
system	calls	(mmap,	munmap,	
sbrk,	mprotect)	

T1:	Chapters	
13,14,15,16,	
17,18,19,	20	
	
T2:	Chapter	9	
	
R8:	Chapters	5,6	
	

	

	

1.	(Virtual)	addresses	
of	variables	and	
initialized	pointers.	

2.	Use	of	malloc()	and	
demonstration	of	per-
process	virtual	
addresses		

3.	Tools	usage	---	
strace,	free,	top,	htop,	

34	

Address	translation	mechanisms	-
--	static	mapping,	
segmentation,paging		

Page	faults,	page	sharing,	
read/write	permissions,	
swapping,	process	vs.	OS	memory	

Memory	bookkeeping	and	
management	---	motivation	and	
mechanisms	(process	and	OS)	

Case	studies	---	(i)	malloc	and	(ii)	
role	of	OS	for	program	to	process		

vmstat,		
/proc/<pid>/maps	

4.	Free	memory	
statistics	correlated	
with	malloc().	Number	
of	system	calls	and	
malloc()	usage.	

5.	Implement	a	custom	
memory	allocator	
using	system	calls	

Module	5:		
Process	
management		
	
(1.5		weeks)	

The	process	lifecycle---source	
code	to	execution	
	
The	OS	mode	of	execution	---	
limited	direct	execution	recap,	
interrupts,	system	calls	

The	process	context	switch	
mechanism	and	PCB	state	

Scheduling	policies	---	set	of	
scheduling	metrics,	goals	and	
examples	(interactive	vs.	realtime,	
priority)	

T1:	Chapters	7,8	
	
T2:	Chapter	8	

1.	User	mode	programs	
to	demonstrate	LDE	

2.	Demonstration	of	
process	execution	
interleaving	in	
different	orders	

3.	Simulation	based	
analysis	of	scheduling	
policies		

4.	Tools	usage	---	nice,	
/proc/<pid>/status		

Module	6:	
Concurrency	
and	
Synchronizatio
n	
	
(3	weeks)	

Motivation	---	application,	process	
and	OS	use	cases.	

Introduction	to	threads	and	the	
pthread	API	

Synchronization	primitives	---	
limitations	of	software	solutions,	
atomic	instructions,	test-and-set,	
spinlocks,	mutexes,	condition	
variables,	semaphores	

Introduction	to	the	pthread	
synchronization	API	

Case	studies	---	producer-
consumer,	reader-writers,	
barriers	

T1:	Chapters	26,	
27,	28,	29,	30,	31,	
32	
	
T3:	Chapters	11,	
12	

1.	Creation	of	threads	
using	the	pthread	API	
and	modification	of	
shared	variables	with	
and	without	
synchronization	

2.	Using	spinlock,	
mutexes	and	condition	
variables	to	implement	
semaphores,	barriers	
(using	the	pthreads	
API)	

3.	Implement	solutions	
to	the	producer-
consumer,	reader-
writers	problems	using	
the	different	

35	

Discussion	on	issues	with	
concurrency	—race	conditions,	
deadlocks,	order	violation.	

	

synchronization	
primitives	

4.	Develop	
synchronization	
solutions	for	
applications	that	use	
shared	data	(e.g.,	
ordering	of	threads,	
concurrent	hash	tables,	
etc.)	

5.	Optional:	Using	
shared	memory	and	
semaphores	
implement	
synchronized	access	to	
a	shared	memory	area	
across	processes	(e.g.,	
a	message	queue).	
	

Module	7:		
File	systems	
	
(2	weeks)	

Persistence	and	the	File	
abstraction		

Hardware	view:	Hard	disk	
architecture	and	its	interfacing	

Process	view:	System	calls	for	file	
handling	

Roles	and	responsibilities	of	file	
system	

File	system	design	details---file	
and	file	system	metadata,	
directory	structure,	caching	
optimizations	

File	System	case	study	(the	unix	
file	system	etc.)	

T1:	Chapters	
36,37,39,	40	
	
T2:	Chapters	4,5	

	

T3:	Chapter	3	

1.	Tools	usage	---	state,	
file,	du,	df,	fsck,	...	

2.	Implementation	of	
file	utilities	(e.g.,	find,	
grep,	…)	using	the	
system	call	API.	

3.	Implement	a	simple	
file	system	to	handle	
files	on	an	emulated	
disk	(via	a	large	file)	---	
file	system	API,	
superblock,	inode	and	
data	block	
management.		 	

	

	

	

	

	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):		

36	

Module		 Topics	 Pedagogy	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

1.	Introduction	to	
setup	and	usage	of	a	
teaching	OS	

Setup,	configuration	and	usage	
of	a	teaching	OS	

Understanding	ISA	details	of	the	
teaching	OS		

Basics	of	interrupt	handling,	
end-to-end	execution	of	a	
system	call	and	context	
switching	mechanisms	
	

	

T4	 1.	Configuration	and	
setup	of	a	teaching	OS	
and	writing	of	simple	
user	mode	programs	
(e.g.,	xv6)	

2.	Simple	logging	style	
modification	to	system	
calls	(e.g.,	#times	a	
system	call	was	
invoked,	histogram	of	
number	of	system	call	
invocations,	…)	

3.	Implement	new	
system	calls	(e.g.,	read	
PCB	elements	to	user	
space	of	a	process)	
(xv6	based)	

2.	Basic	modifications	
to	the	teaching	OS	
functionality		
saved	

OS	context	of	execution	---	
address	space,	stack	
	

Address	translation	mechanism	
in	the	teaching	OS	

	
The	interrupt	handling	
mechanism	(context	save	and	
restore,	privilege	level	change,	
interrupt	dispatch)		
	

Example	usage	of	locks	in	the	
teaching	OS	

	
File	system	state	in	the	
operating	system	(file	
descriptors,	file	objects,	inodes,	
page	cache	…)	and	in	the	
teaching	OS	

T4	 1.	Write	a	system	to	
call	to	output	per	
process	address	space	
details	

2.	Write	a	system	to	
call	to	determine	
physical	address	of	a	
virtual	address	

3.	Observe	the	stack	
pointers,	privilege	
level	registers	in	user	
and	OS	modes	

4.	Modifying/profiling	
behaviour	of	exception	
handlers	

5.	Observe	process	file	
table	entries	and	file	
objects	across	parent	
and	child	processes	

37	

3.	Advanced	
modifications	to	
teaching	OS	
functionality		
	

Context	switch	design	and	
implementation	in	the	teaching	
OS	
	

Lazy	allocation,	page	fault	
management	and	
swapping/demand	paging		

	
Understand	implementation	of	
the	synchronization	primitives	
in	the	teaching	OS	

T4	 1.	Write	a	system	call	
to	allocate	the	same	
physical	block	to	
different	virtual	
addresses	

2.	Implement	lazy	
allocation	of	physical	
memory	to	processes		

3.	System	call	to	print	
saved	state	of	any	
process	

4.	Write	a	system	call	
to	induce	page	faults	

5.	Design	and	
implement	a	shared	
message	queue	
between	processes	to	
be	used	via	the	system	
call	interface	

Suggested	text	books	/	Online	lectures	or	tutorials:	

T1. Operating	 Systems:	 Three	 Easy	 Pieces	
Remzi	 H.	 Arpaci-Dusseau	 and	 Andrea	 C.	 Arpaci-Dusseau	
Arpaci-Dusseau	 Books,	 LLC	
https://pages.cs.wisc.edu/~remzi/OSTEP/	(online	version)	

T2. Design	 of	 the	 UNIX	 Operating	 System	
Maurice	 J.	 Bac	
Pearson	Education	India;	First	edition	

T3. Advanced	 Programming	 in	 the	 UNIX®	 Environment	
W.	Richard	Stevens,	Stephen	A.	Rago	

Pearson	Education	India;	Third	edition	

T4. Xv6,	a	simple	Unix-like	teaching	operating	system	

Frans	 Kaashoek,	 Robert	 Morris,	 and	 Russ	 Cox	
[T4-R]	https://github.com/mit-pdos/xv6-riscv	(RISC-V	version)	

[T4-X]	https://github.com/mit-pdos/xv6-public	(x86	version)		
	

	

Suggested	Online	content:	

38	

1. The	Linux	Documentation	Project,	www.tldp.org		

Suggested	reference	books	/	Online	resources:	

R1. Modern	Operating	Systems,	Andrew	S.	Tannenbaum	and	Herbert	Bos,	Pearson	
Education	India;	4th	edd	

R2. Operating	System	Concepts,	Avi	Silberschatz,	Peter	Baer	Galvin,	Greg	Gagne,	Wiley	
India;	9th,	ed	

R3. Operating	System	courses	offered	on	NPTEL,	https://nptel.ac.in/	

R4. Think	OS,	A	Brief	Introduction	to	Operating	Systems.	Allen	B.	Downey	
https://www.greenteapress.com/thinkos/index.html	

R5. Linux	Kernel	Development	,	Robert	Love,	Pearson	Education	India;	3rd	edition		

R6. Operating	 Systems:	 Principles	 and	 Practice,	 Thomas	 Anderson,	 Michael	
Dahlin,Recursive	Books;	2nd	Edition,	https://ospp.cs.washington.edu/index.htm	

R7. Computer	Systems:	A	Programmer's	Perspective,	Randall	E.	Bryant,	David	
	 		R.O’Hallaron,	Pearson	Education	India;	3rd	edition.	

R8. The	C	Programming	Language,	Brian	Kernighan,	Dennis	Ritchie,	Pearson	Education			
India;	 2nd	 ed.	
		

Prepared	by:		

1. Purushottam	 Kulkarni,	 Department	 of	 Computer	 Science	 and	 Engineering	
(Indian	Institute	of	Technology,	Bombay)	

2. Chester	 Rebeiro,	 Department	 of	 Computer	 Science	 and	 Engineering	
(Indian	Institute	of	Technology,	Madras)	

3. Debadatta	 Mishra,	 Department	 of	 Computer	 Science	 and	 Engineering	
(Indian	Institute	of	Technology,	Kanpur)	

	
The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:		
CS3		
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		CS6,	CS8	
 	

39	

Design	and	Analysis	of	Algorithms	
	
CS404	 Design	and	Analysis	of	

Algorithms	
3L:0T:	4P	 5	credits	 Pre-Reqs:	ESC201,	CS301	

	

Learning	Outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	

the	end	of	the	course	the	student	shall	have):	

Essential	(<=6):	

1. Analyze	the	asymptotic	performance	of	algorithms.	
2. Establish	the	correctness	of	algorithms.	
3. Demonstrate	familiarity	with	major	algorithms	and	data	structures.	
4. Apply	important	algorithmic	design	paradigms	and	methods	of	analysis.	
5. Synthesize	efficient	algorithms	in	common	engineering	design	situations.	
6. Understanding	limits	of	efficient	computation.		

	
Desirable/Advanced	(<=	3):	

1. Intuitive	understanding	of	what	makes	a	problem	NP-hard.	
2. Apply	network	flow	techniques	to	algorithm	design.	

Detailed	contents	for	Essential	Learning	Outcomes:	

Module	(appx	
dur	in	wks)	

Topics	 Pedagogy	/	teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	1:	
Applications	of	
Graph	Search	

(~1.5	wks)	

(i)	Review	of	BFS/DFS	

(ii)	Checking	if	an	
undirected	graph	is	2-
edge	connected.	

(iii)	Checking	if	a	directed	
graph	is	strongly	
connected.		

T1:	Chapter	3,	T2:	Chapter	3,	
R1:	Chapter	22.	

Review	breadth	first	search	
(BFS)	and	depth	first	search	
(DFS)	in	undirected	and	
directed	graphs;	Introduce	
notion	of	a	bridge	and	cut-
vertex.	

Checking	if	a	graph	
is	biconnected	

40	

Module	2:	
Greedy	
algorithms	(2	
wks)	

(i)	Introduction	to	the	
greedy	paradigm		

(ii)	Examples	of	activity	
selection,	deadline	
scheduling,	fractional	
knapsack,	Kruskal’s	
algorithm	for	minimum	
spanning	trees,	Huffman	
coding.	

T1:	Chapter	4,	T2:	Chapter	5.	

Exchange	arguments	are	a	
useful	recipe	for	proving	
correctness	of	greedy	
algorithms.	Illustrate	these	
through	examples.	Show	
examples	where	greedy	does	
not	give	an	optimum	
solution	

(i)	Prim’s	algorithm	
for	minimum	
spanning	trees.	
	
(ii)	Examples	where	
greedy	algorithms	
are	not	optimal.		

Module	3:	
Divide	and	
Conquer	(2	
wks)	

(i)	Explain	why	the	divide	
and	conquer	paradigm	is	
useful.		

(ii)	Illustrate	the	
paradigm	through	integer	
multiplication.		

(iii)	Writing	recurrence	
relations	and	solving	
them.		

(iv)	Further	examples	
from	geometry	–	
domination	number	of	a	
set	of	points,	identifying	
maximal	points,	closest	
pair	of	points.		

(iv)	Linear	time	algorithm	
for	finding	the	median.		

(v)	Randomized	divide	
and	conquer	algorithms:	
randomized	quicksort	and	
selection.	

	

T1:	Chapter	5,	T2:	Chapter	2.	
Solve	recurrences	by	
building	the	recurrence	
tree.	Motivate	choices	of	
parameters	in	median	
finding	algorithm	by	
showing	how	recurrence	
tree	changes.		Mention	
expectation	of	a	random	
variable	and	how	to	make	
sense	of	running	time	of	
randomized	algorithms.	
	

	

(i)	Solve	some	
recurrence	relations.	
	
(ii)	Modify	discussed	
algorithms	(e.g.,	
dividing	into	three	
parts	instead	of	two	
parts,	or	two	
unequal	parts,	etc.)	
and	analyse	using	
recurrences.		
	
(iii)	Some	
elementary	
exercises	on	
expectation	
calculation.	

	

41	

Module	4:	
Dynamic	
Programming	
and	shortest	
paths	(2.5	
wks)	

(i)	Computing	Fibonacchi	
numbers	and	why	divide-
and-conquer	is	not	a	good	
idea.	Idea	of	storing	
function	calls,	tables.		

(ii)	Notion	of	
subproblems	and	optimal	
substructure.	

(iii)		Illustration	through	
subset	sum,	(integer)	
knapsack,	longest	
increasing	subsequence,	
longest	common	
subsequence,	matrix	
chain	multiplication.	
Dijkstra’s	algorithm	for	
single-source	shortest	
paths,	Bellman-Ford	for	
SSSP	with	-ve	weights,	
Floyd	Warshall	for	APSP.	

T1:	Chapter	6,	T2:	Chapter	4,	
Chapter	6.	

Discuss	why	Dijkstra’s	
algorithm	is	an	example	of	
dynamic	programming.	
Extending	Bellman-Ford	to	
APSP	and	to	find	negative	
cycles.	Discuss	how	dynamic	
programming	problems	can	
often	be	cast	as	longest	paths	
in	acyclic	graphs.	

Exercises	on	
dynamic	
programming	
(textbook	
problems)	

Module	5:	
Network	flows	
(2	wks)	

The	maximum	s-t	flow	
problem	in	capacitated	
networks.	Ford	Fulkerson	
algorithm	or	maximum	
flow.	Max-flow	min-cut	
theorem	and	integrality	of	
maximum	flow	for	
integral	capacities.	
Applications	of	max	flow	
to	maximum	bipartite	
matching,	max	disjoint	
paths	

T1:	Chapter	7.	1-7.2,	7.5,	7.6	

Notion	of	residual	capacities	
and	residual	graphs	and	how	
this	allows	us	to	correct	
greedy	decisions	made	in	
earlier	steps	of	FF	algorithm	

(i)	Some	simple	
examples.		
(ii)	Implementation	
of	Ford	Fulkerson	
algorithm.	

42	

Module	6:	
Intractability	
(2wks)	

(i)	Models	of	computation,	
Turing	machines,	RAM	
model.	Brief	discussion	on	
other	models	of	
computation	e.g.	PRAM	
model,	Memory	Hierarchy	
etc.	

(ii)	Notion	of	polynomial	
time	computation.	

(iii)	Polynomial	time	
reductions.	Yes	and	No	
instances	of	decision	
problems.	Decision	vs	
optimization.		

(iv)	NP	as	a	class	of	
problems	with	Yes	
certificates	which	can	be	
efficiently	checked.		

(v)	NP-hardness	and	
Cook-Levin	theorem	(just	
the	statement).		

(vi)	NP-completeness.	
Examples	of	Reductions.		

T1:	Chapter	8,	T2:	Chapter	8	

(i)	Emphasize	how	reduction	
can	be	used	to	solve	a	
problem	using	an	algorithm	
for	a	different	problem.		

(ii)	Emphasize	the	
asymmetry	in	the	definition	
of	NP:	No	efficiently	
checkable	NO	certificates	for	
problems	in	NP.		

(iii)	Problems	which	are	NP-
hard	but	not	in	NP.		

(iv)	Examples	of	poly	time	
reductions.	Polytime	as	a	
measure	of	efficiency.	
Hardness	only	for	the	
general	instance,	whereas	
special	instances	can	be	
efficiently	solvable.		

Exercises	on	
reductions,	NP-
completeness.	

	

Suggested	Texts:	

1. Algorithm	Design,	1ST	Edition,	Jon	Kleinberg	and	ÉvaTardos,	Pearson.	

2. Algorithms,	Sanjoy	Dasgupta,	Christos	Papadimitriou,		Umesh	Vazirani	

Suggested	reference	books:	
	

1. Introduction	to	Algorithms,	4TH	Edition,	Thomas	H	Cormen,	Charles	E	Lieserson,	Ronald	L	
Rivest	and	Clifford	Stein,	MIT	Press/McGraw-Hill.	

2. Algorithm	Design:	Foundations,	Analysis,	and	Internet	Examples,	Second	Edition,	Michael	T	
Goodrich	and	Roberto	Tamassia,	Wiley.	

 	

43	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):	

Module	 Topics	 Pedagogy	teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module1:		 Polynomial	multiplication	
using	FFT	and	DFT.		

	

T1:	Chapter	5.5,	T2:	
Chapter	2.5	

	

(i)	Explain	the	interplay	
between	the	two	
representations	of	a	
polynomial.		

	

(ii)	Explain	why	complex	
numbers	arise	naturally	
here.		

Take	two	
polynomials	and	
multiply	them	by	
first	computing	
the	point-value	
representation	
using	FFT	and	
then	recovering	
product	using	
inverse	FFT	

Module2:		 Beyond	NP-completeness:	
approximations,	exponential	
algorithms,	popular	
heuristics.		

T1:	Chapter	10,	T2:	
Chapter	9	

(i)	Show	that	TSP	can	be	
solved	in	2'	𝑝𝑜𝑙𝑦(𝑛)	time	
(rather	than	n!	Time),	and	
vertex	cover	in	
26	𝑝𝑜𝑙𝑦(𝑛),	where	𝑘is	the	
size	of	the	optimal	vertex	
cover.		

	

(ii)	Give	examples	of	some	
simple	approximation	
algorithms,	e.g.,	bin	
packing,	vertex	cover.	

	

(iii)	Popular	heuristics	for	
satisfiability.		

(i)	Implementation	
of	some	
exponential	time	
algorithms	and	
heuristics	and	see	
how	they	scale	
with	large	n.		

The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:	CS1,	

CS2,	CS4	

44	

Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		

Database	Systems	

	

Course	
code:	?	

Introduction	to	Database	
Systems	

3L:0T:	4P	 Credits:	5	 Pre-Reqs:		
Data	Structures	
and	Algorithms	

	

Learning	Outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	

the	end	of	the	course	the	student	shall	have):	

Essential	(<=6):	

1. Ability	to	design	and	implement	database	schema	for	an	application	using	RDBMS	
concepts.	

2. Ability	to	write	SQL	queries	for	tasks	of	various	complexities.	
3. Ability	to	write	an	application	program	that	uses	a	database	system	as	the	backend.	
4. Understanding	of	internal	working	of	a	DBMS	including	data	storage,	indexing,	query	

processing,	transaction	processing,	concurrency	control	and	recovery	mechanisms.	
5. Awareness	of	non-relational	and	parallel/distributed	data	management	systems	with	a	

focus	on	scalability.	

Desirable/Advanced	(<=	3):	

[Nil]	
	

Detailed	contents	for	Essential	Learning	Outcomes:	

Module	
(appx	dur	in	
wks)	

Topics	 Pedagogy	/	
teaching	
suggestions	

Nature	of	lab	/	assignment	/	
practice	

Module	1:	
Introduction	

(~	1	wk)	

(i)	Motivation	

	

(ii)	Introduction	to	Data	
Models	(Relational,	
Semistructured,	ER)	

		 	

	

45	

Module	2:		

Relational	
Databases	

(~	1.	5	wks)	

(i)	Relational	Data	Model	

(ii)	Relational	Algebra	

(iii)	Relational	Calculus	or			
Connection	to	First	Order	Logic	
(Optional)	

		 (i)	Simple	pen+paper,	and	
using	Relax	Relational	Algebra	
calculator	in	browser	

Module	3:		

SQL	+	
interfacting	
with	database	

	

(~3	wks)	

(i)	DDL	

(ii)	Insert/Delete/Update	

(iii)	Simple	Queries	
(select/project/join/	aggregate	
queries)	

(iv)	Complex	queries	(With	
Clause,	Nested	Subqueries,	
Views)		

(v)	Programming	in	a	standard	
language	and	interfacing	with	a	
DB	backend		

	 (i)	Laboratory	exercises	where	
students	write	SQL	queries	for	
various	tasks.	

Platform	can	be	PostgreSQL	
preferably,	or	MySQL.	
W3Schools/SQLite	in	web	
browser	can	also	be	used	but	
beware	of	non-standard	SQL	
features.	

(ii)	Practice	interfacing	with	a	
database	from	a	program	using	
connectors	like	JDBC/ODBC…	

Module	4:		
Big	Data	

(~1	wk)	

Key-value	Stores	and	Semi-
structured	Data,	using	JSON	
and	MongoDB,	or	other	
combinations	

	 (i)	Small	exercises	on	
MongoDB	

Module	5:	
Database	
Design	

(~2	wk)	

(i)	Introduction	to	ER	model	

(ii)	Mapping	from	ER	to	
relational	model	

(iii)Functional	Dependencies	

(iv)	Normalization	(BCNF,	
Optionally	3NF)	

	 (i)	Exercise	in	ER	design	for	an	
application	starting	with	
natural	language	description	

(ii)	Convert	ER	design	to	tables	

(iii)	Pen-and-paper	exercises	
with	FDs	and	normalization	

Module	6:	
Physical	
Design	

(˜2	wk)	

(i)	Overview	of	Physical	
Storage	(Hard	Disks,	
Flash/SSD/RAM),	sequential	vs	
random	I/O,	Reliability	via	
RAID	

(ii)	Storage	Organization	
(Records,	Pages	and	Files),	

	 (i)	Use	a	B+-tree	visualization	
system	to	understand	how	B+-
trees	work	

46	

Database	Buffers,	Database	
Metadata	

(iii)	Indexing,	B+-Trees	

	

Module	7:		
Query	
Processing	
and	
Optimization	

	

(~2	wk)	

(i)	Query	Processing:	External	
sort,	Joins	using	nested	loops,	
indexed	nested	loops	

(ii)	Overview	of	Query	
Optimization:	equivalent	
expressions,	and	concept	of	
cost-based	optimization	

	 (i)	Examine	query	plans	for	
sample	queries	by	using	the	
Explain	feature	of	database	
systems.	

(ii)	Small	exercises	to	show	
benefit	of	indices.	

Module	8:	
Transaction	
Processing	

	

(˜2	wk)	

(i)	Concept	of	transactions	and	
schedules,	ACID	properties	

(ii)	Conflict-serializability	

(iii)	Concurrency	control:	locks,	
2PL,	Strict	2PL,	optional:	
isolation	levels	

(iv)	Recovery	using	undo	and	
redo	logs	

	 (i)	Pen-and-paper	exercises	on	
conflicts,	cycles,	conflict	
serializability,	recoverability,	
etc.	

	

Suggested	text	books	/	Online	lectures	or	tutorials:	

1. Database	System	Concepts,	7th	Ed,	Silberschatz,	Korth	and	Sudarshan,	McGraw-Hill.	Indian	
Edition	released	2021	

2. Fundamentals	of	Database	Systems,	7th	Ed,	Elmasri	and	Navathe,	Pearson	Pubs,	2017	

3. Principles	of	Database	Management,	Lemahieu,	Broucke	and	Baesens,	Cambridge	University	
Press,	2018	

Suggested	reference	books	/	Online	resources:	
1. Software	

a. Relax	Relational	algebra	calculator:	https://dbis-uibk.github.io/relax/landing	
b. SQL:	PostgreSQL/MySQL/MariaDB,	or	SQLite	in	browser	
c. B+-tree	 visualization:	

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html	
d. MongoDB	

47	

e. Various	DB	systems	playground:	https://www.pdbmbook.com/playground	

	

The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:	 	CS3,	
CS5,	CS6	
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:	CS1,	CS7,	CS9	
 	

48	

Computer	Networks	

	

CS602	 Computer	Networks	 3L:0T:	2P	 4	credits	 Pre-Reqs:	CS402	Computer	
Organisation,	CS403	Operating	
Systems	

	
	
Pedagogy	and	Learning	Outcomes	
This	course	introduces	students	to	the	fundamental	principles	of	computer	networks,	and	to	their	
use	in	the	Internet.	 	Lab	assignments	cover	network	programming,	network	tools,	applications,	
and	 simulation.	 	 Through	 these	 assignments,	 students	 get	 a	 broad	 understanding	 by	 building,	
operating	and	tuning	components	of	the	Internet.		The	top-down,	application-driven	design	of	the	
course	motivates	students	with	familiar	uses	and	problems	of	their	digital	world	and	enables	them	
to	work	with	real-world	applications	from	early	in	the	course.	
	
At	the	end	of	the	course	the	student	shall:	
Essential	(<=6):	
1. Understand	 the	 architecture	 principles	 that	 have	 enabled	 the	 orders	 of	 magnitude	

expansion	of	the	Internet	
2. Understand	networked	applications	and	 their	protocols,	 their	 installation,	 operation	and	

performance	tuning	
3. Understand	layering	as	a	means	of	tackling	complexity,	layering	applied	to	the	Internet	
4. Understand	protocols	as	a	structured	means	of	reliable	communications	
5. Be	conversant	with	network	programming	using	the	socket	API	
6. Be	familiar	with	tools	for	configuring,	monitoring	and	tuning	the	Internet	and	hosts	

	
Desirable/Advanced	(<=	3):	
1. Understand	basics	of	data	centre	networks	and	software-defined	networks	(SDN)	
2. Understand	cellular	networks,	mobility	and	the	impact	on	applications	
3. Understand	 the	 interaction	 between	 streaming	 media	 applications	 and	 the	 underlying	

network	infrastructure.	

49	

Detailed	contents	for	Essential	Learning	Outcomes:	

Module	(approx	
duration	in	wks)	

Topics	 Pedagogy	/	
teaching	

suggestions	

Lab	/	assignment	/	
practice	

Module	1:	
Introduction	to	
the	Internet	
(1	week)	

Overview	of	how	the	Internet	
works.	Understand	at	a	high	
level	what	happens	when	we	
browse	a	website.	Understand	
basic	terminology	like	browser,	
web	server,	URL,	domain	name,	
IP	address,	packets.	(1	hour)	

	

Overview	of	the	design	
principles	of	the	Internet:	packet	
switching	vs	circuit	switching,	
store-and-forward	networks,	
layering	for	modularity.	
Introduction	to	the	various	
layers	in	the	Internet.	(1	hour)	

Introduction	to	performance	
metrics	like	end-to-end	
throughput,	delay,	jitter	and	
drop	rates	in	a	network.		
Statement	of	Little's	Law.		How	
performance	is	measured.	(1	
hour)	

Kurose	&	Ross:	
Chap	1	(sec.	1.1-
1.5).	
Raj	Jain:	Sec.	3.2	
-	3.4	

Top-down	
sequence	is	
recommended.	
Performance	
metrics	and	
measurement	
concepts	are	
introduced	in	
Module	1	and	
used	in	all	
modules	
(lectures	and	
labs)	as	
appropriate.	

-	Use	Linux	tools	like	
ifconfig,	dig,	ethtool,	
route,	netstat,	
nslookup,	and	ip	to	
understand	the	
networking	
configuration	of	the	
computer	that	the	
student	is	working	on.	

-	Use	Wireshark	to	
capture	packets	when	
browsing	the	Internet.	
Examine	the	structure	
of	packets:	the	various	
layers,	protocols,	
headers,	payload.	

	

This	resource	is	useful	
for	many	of	the	lab	
assignments:	
https://gaia.cs.umas
s.edu/kurose_ross/a
bout.php	

Module	2:	
Application	layer	
(2	weeks)	

-	Internet	names,	how	
DNS	works.	(1	hour)	

-	Application	layer	
protocols:	HTTP,	SMTP,	
SNMP,	web	applications.	
(3	hours)	

-	Peer-to-peer	
applications.	P2P	file	
distribution.	(1	hour)	

-	Audio	and	video	
streaming.	Challenges	of	
streaming	over	best	
effort	IP.	(1	hour)		

Kurose	and	
Ross:	Chap	2	
(sec.	2.1-2.5),	Sec.	
7.1.3	

-	Install	and	configure	
some	network	
applications,	eg.	
Apache,	Bind	(DNS),	
etc.	

-	Understand	various	
header	fields	and	their	
usage	in	different	
application	layer	
protocols	using	
Wireshark	packet	
capture.	

50	

Module	(approx	
duration	in	wks)	

Topics	 Pedagogy	/	
teaching	

suggestions	

Lab	/	assignment	/	
practice	

Module	3:			

Linux	Network	
Programming	
(0.3		week)	

-	Introduction	to	socket	
programming	in	Linux.	
Understand	how	to	build	a	
simple	client-server	application	
using	TCP/UDP	sockets.	(1	
hour)	

Kurose	and	
Ross:	Sec	2.7.	

	

-	Socket	
programming:	write	a	
simple	client-server	
program	using	TCP	
and	UDP	sockets.		

Optional:	Modify	
server	to	handle	
multiple	clients	
concurrently.	

Module	4:	
Transport	Layer	
(2.3	weeks)	

-	Importance	of	the	transport	
layer;	end-to-end	principle.	
Transport	layer	protocols:	
basics	of	TCP	and	UDP,	process-
to-process	delivery,	
multiplexing,	port	numbers,	
header	structure.	(2	hours)	

-	Reliable	transmission	of	
packets	over	an	unreliable	
network:	sequence	numbers,	
ACKs,	timeout,	retransmissions.	
Stop	and	wait,	and	sliding	
window.	(2	hours)	

-	TCP	connection	setup	and	
teardown.	(1	hour)	

	

-	Flow	control	and	congestion	
control	at	the	transport	layer.	
Differences	between	the	two.	
Overview	of	TCP	congestion	
control:	Slow	start	and	reaction	
to	timeouts	(2	hours)	

	

-	TCP	congestion	control:	Slow	
start;	congestion	avoidance	
using	loss-based	and	delay-
based	control.	(1	hour)	

Kurose	&	Ross:	
Chap.	3	(sec.	3.1-
3.6)	

	

Lab:	Optional	--	
https://www.isi.
edu/nsnam/ns/t
utorial/nsscript1.
html#second	

	

Validation	tests	
and	demos:		

https://www.isi.
edu/nsnam/ns/n
s-tests.html	

-	Measure	TCP	
throughput	between	
two	hosts	in	a	
network	using	tools	
like	iperf.	Modify	TCP	
configuration	
parameters.	Use	the	tc	
Linux	utility	or	similar	
to	control	bandwidth,	
delay,	loss.		Observe	
impact	on	measured	
throughput.	

-	Experiment	with	
multiple	applications	
running	concurrently	
to	generate	
congestion.	

Optional:	Observe	the	
behaviour	of	
congestion	control	
protocols	in	ns-2/ns-
3,	change	various	
network	parameters	
and	observe	evolution	
of	the	TCP	congestion	
window.	

51	

Module	(approx	
duration	in	wks)	

Topics	 Pedagogy	/	
teaching	

suggestions	

Lab	/	assignment	/	
practice	

Module	5:		
The	IP	Layer	
(2	wks)	

[A]	 	Network	architecture	and	
performance	

- Network	 topology;	 Router	
architecture:	 queueing	 and	
switching.	(2	hour)	

- Performance	 evaluation	 of	 a	
network	 link:	 traffic	
characteristics,	 performance	
measures,	 Kendall's	 notation.			
(1	hour)	

	

[B]	IP	Protocol	

-	 	Need	 for	 an	 Internet	address,	
and	 its	 design.	 	 Hierarchical	 IP	
addressing,	 IPv4	 and	 IPv6,	
structure	 of	 IP	 datagram,	 IP	
forwarding.		

-	 	 NATs,	 security attacks and
defences: DMZ,	 firewalls.	 (3	
hours)		

Kurose	 &	 Ross:	
Chap.	1.4;	Chap.	4	
(Sec.	4.1,	4.3,	4.4)	

S.	 Bose:	 Chap.	 1;	
Chap.	2.3	

-	 Use	 tools	 like	 ping	
and	 traceroute	 to	
explore	 various	
Internet	 paths	 to	
popular	servers.	

-	Use	web-based	 tools	
like	 the	 whois	 utility	
to	 query	 Internet	
registries,	 and	
understand	 which	 IP	
addresses	 are	
allocated	 to	 the	
student's	 network.	
Find	out	which	are	the	
major	ISPs,	and	which	
is	 the	 ISP	 of	 the	
student's	network.	

	

Module	6:		
Routing	protocols	
and	Internet	
architecture	
(2	wks)	

-	 Routing	 protocols:	 Link	 state	
routing.	Distance	vector	routing:	
count-to-infinity,	 routing	
convergence.	(3	hours)	

-	Understand	the	structure	of	the	
Internet:	end-user	organizations	
and	 ISPs.	 	 Understand	 the	
difference	between	intra-domain	
(OSPF)	 and	 inter-domain	 (BGP)	
routing.	 Intra-domain	 routing:	
OSPF.	(3	hours)	

	

Kurose	 &	 Ross:	
Chap	4	(Sec.	4.5	-	
4.6)	

-	 Configure	 a	 simple	
mesh	 network	 using	
computers	 in	 the	 lab,	
or	 using	 Mininet.		
Setup	 static	 routes	 to	
conform	to	the	desired	
mesh	topology.	

-	 Use	 NS-2/NS-3	 to	
simulate	 a	mesh	 of	 at	
least	 4	 nodes	 and	 3	
links	 to	 evaluate	
performance	 under	
various	conditions	

52	

Module	(approx	
duration	in	wks)	

Topics	 Pedagogy	/	
teaching	

suggestions	

Lab	/	assignment	/	
practice	

Module	7:		
Data	Link	Layer	
(2	wks)	

-	 Mechanisms	 for	 error	
detection/recovery:	 Parity	
checks,	CRC	(1	hour)	
-	 Medium	 access	 protocols:	
Polling	 vs.	 contention-based:		
TDM,	Aloha,	CSMA/CD	(3	hours)	
-	 Switched	 LANs:	 L2	 addressing	
and	 ARP,	 Ethernet	 frame	
structure,	 learning	 switches.	 (2	
hours)	

Kurose	 &	 Ross:	
Chap.	5	(Sec.	5.1	-	
5.4)	

-	 Use	 Linux	 network	
tools	 like	 ethtool	 to	
observe	 and	 analyze	
link	 layer	 packet	
statistics	and	errors.	
	
Optional:	 Use	 NS-
2/NS-3	 to	 simulate	
medium	 access	
protocols.	 	 Observe	
contention,	 collisions	
and	 packet	 loss	 in	
medium	 access	
protocols.	Observe	the	
working	 of	 error	
detection/recovery	
mechanisms.	

Module	8:	
Wireless	
Networks	
(1	wk)	

-	Wireless	physical	layer:	signal-
to-noise	 ratio,	 bit	 error	 rate,	
modulation,	 multipath,	
interference	(1	hour)	
	
-	 Wireless	 LANs:	 802.11	
architecture	(access	points,	SSID,	
channels,	 beacons,	 scanning,	
association),	 802.11	 CSMA-CA	
protocol;	 summary	 of	 802.11	
variants	(3	hours)	

Kurose	 &	 Ross:	
Chap	 6	 (Sec.	 6.1,	
6.2,	6.3)	

-	 Use	 cellphone	 to	
measure	 WiFi	 signal	
strength	 (RSS)	 at	
various	 places	 in	 the	
campus.	 	 Draw	 a	
contour	 map	 with	
access	points	 and	RSS	
levels.	 	 Correlate	with	
upload/download	
speed	 using	 tools	 like	
Measurement	 Lab	
speedtest.	
Optional:	 Understand	
the	 behavior	 of	 WiFi	
using	NS-2/NS-3.	

	

53	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):		

Module	(approx	
duration	in	wks)	

Topics	 Pedagogy/	
teaching	

suggestions	

Lab	/	assignment	/	
practice	

Module	D1:	SDN	
and	data	centre	
networking	

Data	centre	network	design	and	
topology.	Transport	protocols	
optimized	for	data	centres.	
Introduction	to	software	defined	
networking.	

Kurose	and	
Ross:	Chap.	
5.6	

Refs	[5],	[6]	

Simulate	transport	
protocols	optimized	for	
data	centres	in	NS-2/NS-3.	
	

Module	D2:	Mobile	
data	networks	

Cellular	Internet	access.	Mobility	
management	and	handovers.	
Impact	of	mobility	on	higher	
layers.	

Kurose	and	
Ross:	Chap.	
6.4-6.8	

Use	cellphone	to	measure	
cellular	signal	strength	
(RSS)	at	various	places	in	
the	campus.		Draw	a	
contour	map	with	
cellphone	towers	and	RSS	
levels.		Correlate	with	
upload/download	speed	
using	tools	like	
Measurement	Lab	
speedtest.	

Module	D3:	
Streaming	media	
protocols	and	
services	

Multimedia	applications.	Audio	
and	video	streaming	over	UDP,	
HTTP.	Adaptive	streaming.	Voice	
over	IP.	Recovering	from	packet	
loss	and	jitter.	QoS.	Protocols	for	
real	time	applications.	

Kurose	and	
Ross:	Chap.	7	

Implement	a	streaming	
audio/video	server	using	
open-source	software.	

	

Suggested	text	books	/	Online	lectures	or	tutorials:	

1. J.F.	Kurose	and	K.F.	Ross,	Computer	networking:	a	top-down	approach,	6th	ed,	Pearson,	
2017.	(6th	ed.	is	low-cost	Indian	edition.		7th	ed.	is	high-cost,	may	be	used	if	available.)	

	

Suggested	reference	books	/	Online	resources:	

1. R.	Jain,	The	art	of	computer	systems	performance	analysis,	Wiley	India,	1991.	

2. S.K.	Bose,	An	Introduction	to	Queueing	Systems,	Springer	Science+Business	Media	
New	York,	2012.	

3. A.S.	Tanenbaum	and	D.J.	Wetherall,	Computer	Networks,	5th	ed.,	Pearson,	2013.	

4. Larry	Peterson	and	Bruce	Davie,	Computer	Networks:	A	Systems	Approach,	6th	Ed.,	
available	at	https://book.systemsapproach.org/	

● N.	Feamster,	J.	Rexford,	Ellen	Zegura,	“The	Road	to	SDN”,	ACM	Queue,	2013.	

● Alizadeh	et	al.,	“Data	Center	TCP”,	ACM	SIGCOMM	2010.	

54	

● The	Network	Simulator	-	ns-2,	https://www.isi.edu/nsnam/ns/	

● E.	Altman	and	T.	Jimenez,	NS2	Simulator	for	Beginners,	2003.	

● ns-3	network	simulator.	https://www.nsnam.org/	
	

Prepared	by	(alphabetical	order):		

1. Timothy	A	Gonsalves,	School	of	Computing	&	Electrical	Engg,	IIT	Mandi	

2. BN	Jain,	Department	of	Computer	Science	&	Engg,	IIIT	Delhi	

3. Vinay	Ribeiro,	Department	of	Computer	Science	&	Engg,	IIT	Bombay	

4. PM	Sreelakshmi,	School	of	Computing	&	Electrical	Engg,	IIT	Mandi	

5. Mythili	Vutukuru,	Department	of	Computer	Science	&	Engg,	IIT	Bombay	

	

The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:	CS3	
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:	CS4,	CS6,	CS8	

	

 	

55	

Machine	 Learning	

CSXXX	 Machine	Learning	 3L:1T:	0P	 4	credits	 Pre-Reqs:	Engg.	
mathematics	(LinAlg,	
Prob),	Algorithms	

	
Learning	Outcomes	of	the	course	(i.e.,	statements	on	students’	understanding	and	skills	at	
the	end	of	the	course	the	student	shall	have):	
	
Essential	(<=6):	

1. Understanding	popular	ML	algorithms	with	their	associated	mathematical	foundations.	
2. Capability	 to	 implement	 basic	 algorithms	 using	 basic	 (python)	 libraries.	 Have	 hands-on	

experience	in	applying	ML	to	problems	encountered	in	various	domains.	Have	exposure	to	
high	level	ML	libraries	or	frameworks	such	as	TF,	pytorch.	

3. Make	aware	of	the	role	of	data	in	the	future	of	computing	and	solving	real-world	problems.	
4. Helping	 them	 connect/map	 real-world	 problems	 to	 the	 appropriate	 ML	 algorithm(s)	 to	

solve	them	
5. Appreciate	the		mathematical	background	behind	the	popular	ML	algorithms	
6. Have	awareness	about	the	importance	of	core	CS	principles	such	as	algorithmic	thinking	and	

systems	design	in	ML	
		 	 	 	 	 	 	 	
Desirable/Advanced	(<=	3):	 		 	 		 		 		 	 	 	
		

1. Have	a	solid	mathematical	understanding	of	the	popular	ML	algorithms	
2. Preparedness	to	use	state	of	the	art	machine	learning	algorithms	in		formulating	and	solving	

new	problems.	
3. Capability	to	train	(or	solve	optimization	problems)		ML	models		with		applications	in	real	

world	use	cases.		 	 	 	 	 	 	
	
Detailed	contents	for	Essential	Learning	Outcomes:	
		

Module	
(appx	

duration	of	
3	weeks	or	
9-12	Hrs)	

Topics	 Pedagogy	/	teaching	
suggestions	

Nature	of	lab	/	assignment	/	
practice	

Introduction	
to	ML	
(~2wk)	

(i)	Motivation	and	
role	of	machine	
learning	in	computer	
science	and	
problem-solving		

(ii)	Representation	
(features),	linear	

(i)	Connect	machine	
learning	to	the	broader	
theme	of	Computer	Science	
	
(ii)	Expose	broad	canvas	of	
machine	learning;	brief	
history	and	importance	
	

	
(i)Experiments/notebooks/co
de	that	refresh	Python,	
programming	frameworks	
used	for	the	course	
	
(ii)	Experiments/Code	that	
allows	students	to	appreciate	
mathematics	and	data	

56	

transformations,	
Appreciate	linear	
transformations	and	
matrix	vector	
operations	in	the	
context	of	data	and	
representation.		

(iii)	Problem	
formulations	
(classification	and	
regression).		

(iv)	Appreciate	the	
probability	
distributions	in	the	
context	of	data,	Prior	
probabilities	and	
Bayes	Rule.		

(v)	Introduce	
paradigms	of	
Learning	(primarily	
supervised	and	
unsupervised.	Also	a	
brief	overview	of	
others)	
	
	

(iii)	Role	of	data,	
Connection	to	the	
knowledge	/experience	in	
learning.		
	
(iv)	Show	successful	
examples	of	machine	
learning	in	
Industry/working	
	
(v)	Motivate	students	by	
Showing		how	ML	and	Data	
driven	solutions	could	help	
in	our	day	to	day	problems	
around	(interdisciplinary	
such	as	agriculture,	
healthcare,	education,	
living	etc.)	
	
(vi)	Refresh	the	basic	
mathematical	notions	that	
students	may	know	
(vectors,	matrices,	
probabilities,	etc.)	with	
examples	in	ML	
	
(vii)	Make	students	aware	
of	relevant	topics	like		
“what	is	learnable”?	And	
“what	are	the	
disadvantages	of	data	
driven	solutions”.	

manipulation.	Appreciate	(a)	
Features,	Representation	of	
the	data/real-world	
phenomena	(b)	mathematical	
operations	or	transformations	
that	manipulate	the	data	(c)	
plot/visualise	the	data	
distributions	(say	in	2D)	(d)	
eigen	values,	eigen	vectors,	
rank	of	matrices.		
	
	
(iii)	Lab/Experiments	that	
appreciate	the	problem	of	
Classification	and	problem	of	
Regression	
	
(iv)	Lab/Experiments	that	
appreciates	the	notions	
related	to	“Training”	and	
“Testing”	by	considering	
algorithms	like	decision	trees,	
nearest	neighbour	as	black	
boxes.	

Fundamentals	
of	 ML	 (~3	
wks)	

	

(i)	PCA	and	
Dimensionality	
Reduction,		

(ii)	Nearest	
Neighbours	and	
KNN.		
	
(iii)	Linear	
Regression	

(iv)	Decision	Tree	
Classifiers		

(iv)	Notion	of		
Generalization	and	

(i)	Focus	on	mathematical	
and	algorithmic	precise	
description	of	the	content.		
	
(ii)	Insights	into	these	
algorithms,	why?	When?	
What	are	the	limitations?	
Why	multiple	algorithms	
exists	for	a	specific	
problem	
	
(iii)	Insights	into	the	notion	
of	generalization.	
Challenges	for	
generalization.	
Assumptions	to	make	

(i)	Dimensionality	Reduction	
using	PCA	and	its	applications	
in	(a)	removing	irrelevant	
features	(b)	compression	
/compaction	(c)	efficient	ML	
pipeline	

	
(ii)	Experiment	related	to	
Nearest	neighbour	classifier,	
(a)	visualize	the	decision	
boundaries	(b)	appreciate	the	
role	of	hyperparameter	K.	
Role	of	validation	data	in	
choice	of	hyper	parameters	
	

57	

concern	of	
Overfitting		

(v)	Notion	of	
Training,	Validation	
and	Testing;	Connect	
to	generalisation	and	
overfitting.		
		

	
(iv)	Practical	insights	and	
tops	on		avoiding	
overfitting.	

(iii)	Decision	Tree	as	a	
classifier	and	see	the	
overfitting	with	“deep”	trees.	
How	the	overfitting	can	be	
controlled	by	seeing	
validation	performance	
during	the	training.	

Selected	
Algorithms		
(~4		wks)	

(i)	Ensembling	and	
RF		

(ii)	Linear	SVM,		

(iii)	K	Means,	
	
(iv)	Logistic	
Regression	

(v)	Naive	Bayes	
	

	

(i)	Make	students	
appreciate	the	role	of	
optimization	in	machine	
learning.	Challenges	in	
optimization	and	why	we	
are	sometimes	happy	with	
sub-optimal	solutions.	How	
assumptions	make	the	
algorithms	
simple/tractable.		
	
(ii)	Make	students	
appreciate	the	role	of	
uncertainty	in	data	and	
machine	learning	
problems/solutions.	Give	
probabilistic	insights	into	
Loss	functions	(em	MSE,	
cross	entropy)	
	
(iii)	Introduce	iterative	
algorithms,	convergence,	
role	of	initialization	etc.	in	
a	class	of	ML	solutions.	
	
(iv)	Connect	the	geometric	
view	of	Margin	(eg,	linear	
SVM)	and	Probabilistic	
View	of	Margin	(Logistic	
Regression)		and	the	need	
of	Generalization	
	
	

(i)	Experiments	related	to	K-
Means,	by	varying		in	“K”,	
“initialization”.	How	the	
“analysis	of	the	algorithm”	can	
be	seen	in	the	lab	(eg.	change	
of	objective	across	iterations).	
Try	multiple	datasets.	
Appreciate	that	
“unsupervised	discovery”	
makes	sense	in	the	problem	
under	consideration.	
	
(ii)	An	experiment	that	
demonstrates	how	SVM	can	
yield	a	solution	better	than	a	
simple	linear	separating	
solution.	Appreciate	the	role	
of	support	vectors.	Appreciate	
how	SVMs	extend	to	problems	
even	if	data	is	not	linearly	
separable.		
	
(iii)	An	experiment	that	
makes	students	appreciate	
the	utility	of	naive	Bayes	
classifier	in	practice	(say	
designing	a	text	classifier).		

Neural	
Network	
Learning	 (˜4	
wks)	

(i)	Role	of	Loss	
Functions	and	
Optimization,	

(i)	Appreciate	(a)	the	
neuron	model	(b)	the	
neural	network	and	its	
utility	in	modelling	and	

(i)	Experiment	that	exposes	
the	GD	and	BP	in	simple	
neural	networks.	Show	the	

58	

(ii)	Gradient	Descent	
and	
Perceptron/Delta	
Learning,		

(iii)	MLP,		

(iv)Backpropagation		

(v)	MLP	for	
Classification	and	
Regression,		

(vi)	Regularisation,	
Early	Stopping		

(vii)	Introduction	to	
Deep	Learning	
(viii)	CNNs	

	

solving	the	problem.	
Connect	to	the	biological	
motivations	and	
parallelism.	
	
(ii)	Expose	the	simple	
elegant	optimization	
scheme	of	gradient	descent	
with	associated	
mathematical	rigour	and	
insights.	
	
(iii)	Expose	the	practical	
issues	in	extending	GD	to	
multiple	layers	and	how	
the	backpropagation	
algorithm	efficiently	
computes	the	gradients.		
	
(iv)	Expose	the	practical	
challenges	in	training	a	
neural	network	(such	as	
non-convexity,	
initialization,	size	of	data,	
number	of	parameters)	and	
how	they	are	taken	care	of	
in	the	practical	
implementations	of	today.	
	
(v)	Appreciate	the	need	for	
empirical	skills	in	training	
neural	networks.	

learning	process	(graphs)	and	
performances.		
	
(ii)	Experiment	that	use	a	
modern	library	and	
implementation	of	a	deep	
neural	network,	expose	
computational	graphs,	expose	
the	generalized	way	of	
appreciating	BP	as	a	learning	
algorithm	in	Deep	Neural	
Networks	
	
(iii)	Experiment	that	uses	a	
popular	CNN	architecture	for	
practical	application	(say	
image	classification).		
	
(iv)	Experiments	that	
strengthen	the	empirical	skills	
in	training	with	(a)	
initializations	(b)	update	
strategies	(c)	regularisation	
(d)	multi	fold	validation	on	a	
small/medium	size	deep	
neural	network	that	can	be	
trained	in	5	minutes.	

		
	
	
 	

59	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):	
		

Module	
	

Topics	 Pedagogy	teaching	suggestions	 Nature	of	lab	/	
assignment	/	practice	

Key	Concepts	
from	ML	

Kernels	(with	
SVM),	Bayesian	
Methods,	
Generative	
Methods,	HMM,	EM,	
PAC	learning	

	Focus	on	mathematical	and	
analytical	skills.	Expose	the	
intuition	behind	these	
algorithms.	Introduce	analysis	of	
machine	learning	using	a	PAC	
model.		

	Python	notebooks	
that	demonstrate	the	
use	of	these	
algorithms	on	public	
datasets	

	

Deep	
Learning	
Architectures	

Popular		CNN	
Architectures,	
RNNs,	GANS	and	
Generative	Models,		

	

		

	Introduce	popular	architectures,	
models,	and	the	use	of	it	in	
various	settings.	

	

(i)	Use	of	popular	
architectures	for	
pretrained	features	
and	transfer	learning	

(ii)	Use	of	RNNs	in	
learning	“language	
models”	in	large	text	
corpus	(charRNN)	

(iii)	Capability	and	
practical	challenged	in	
working	with	GANS	

	

Training	
Todays	
Neural	
Networks	

Advances	in	
Backpropagation	
and	Optimization	
for	Neural	
Networks	

	

Adversarial	
Learning	

	

	Appreciate	the	challenges	in	
large	nonconvex	optimization	
and	how	many	of	today's	design	
choices	have	helped.	

(i)	See	how	(a)	
initialization	(b)	
momentum	(c)	update	
rules	have	helped	in	
getting	better	
minima/soln.	

(ii)	Experience	how	
regularisation	helps	in	
avoiding	overfitting	
and	getting	better	
solutions	

	

	

																	 	

60	

																					Notes	on	Exercises/Labs/Homeworks:	
1. Use	iPython/Jupyter	notebooks	to	hand	out	assignments;	such	notebooks	allow	embedding	

instructions/videos/etc,	making	it	easy	for	instructors,	students	as	well	as	TAs	
2. It	 may	 be	 good	 to	 have	 both	 theory	 and	 programming	 components	 in	 the	

assignment/homework	component,	to	allow	students	to	appreciate	and	learn	both	aspects	
of	machine	learning	

3. Based	on	 target	 audience,	 have	 a	 healthy	mix	of	 using	 an	off-the-shelf	machine	 learning	
library	(e.g.	using	sklearn’s	decision	tree	function)	and	writing	an	algorithm	from	scratch	
(e.g.	coding	up	decision	tree	from	scratch)	

4. Consider	 having	 a	 Kaggle-style	 hackathon	 in	 the	 course,	 where	 students	 get	 used	 to	
competitive	machine	learning	

																				

																			Notes	on	Sequencing	Lectures:	
1. Consider	your	target	audience	(undergrad	vs	grad;	2nd-year	vs	3rd/4th-year	students;etc)	

in	deciding	the	prerequisites	that	the	students	may	fulfil,	and	also	the	topics	that	you	may	
want	to	cover.	

2. It	may	be	worthwhile	visiting	publicly	available	course	outlines	to	verify	and	confirm	that	
no	important	topics	are	missed	out	from	both	fundamental	and	contemporary	perspectives	
(it	is	important	to	keep	both	these	considerations	in	mind	–	to	raise	the	spark	of	fundamental	
curiosity	and	also	to	provide	utilitarian	value)..	

3. Sequencing	can	be	done	considering	the	target	audience	in	mind	–	one	option	may	be	to	start	
with	simple	algorithms	and	gradually	move	towards	mathematically	involved	ones.	

4. Sequencing	can	also	be	modified	based	on	whether	there	are	any	other	machine	learning	or	
AI	or	related	courses	in	the	curriculum/elective	list.	

Suggested	 text	 books	 /	 Online	 lectures	 or	 tutorials:	
	

1. Marc	Peter	Deisenroth,	A.	Aldo	Faisal,	Cheng	Soon	Ong,	Mathematics	for	Machine	Learning,	
Cambridge	University	Press	(23	April	2020)	

2. Tom	M.	Mitchell-	Machine	Learning	-	McGraw	Hill	Education,	International	Edition	

3. Aurélien	 Géron	 Hands-On	 Machine	 Learning	 with	 Scikit-Learn,	 Keras,	 and	 TensorFlow,	
O'Reilly	Media,	Inc.	2nd	Edition	

	
Reference	Books:	

1. Ian	 Goodfellow,	 Yoshoua	 Bengio,	 and	 Aaron	 Courville	 Deep	 Learning	 MIT	 Press	 Ltd,	
Illustrated	edition		

2. Christopher	M.	Bishop	Pattern	Recognition	and	Machine	Learning	-	Springer,	2nd	edition	

3. Trevor	 Hastie,	 Robert	 Tibshirani,	 and	 Jerome	 Friedman	 -	 The	 Elements	 of	 Statistical	
Learning:	Data	Mining,	Inference,	and	Prediction	-	Springer,		2nd	edition	

61	

			Prepared	 by:		
	

1. Mitesh	Khapra,	IIT	Madras	

2. Vineeth	N	Balasubramanian,		IIT	Hyderabad	

3. P.	K.	Biswas,		IIT	Kharagpur	

4. Piyush	Rai,		IIT	Kanpur	

5. Preethi	Jyothi,		IIT	Bombay	

6. Pabitra	Mitra,		IIT	Kharagpur	

7. Chetan	Arora,		IIT	Delhi	

8. P	J	Narayanan,		IIIT	Hyderabad	

9. C.	V.	Jawahar,		IIIT	Hyderabad	

	

	

 	

62	

Cyber	Security	

	

CSXXX	 Introductory	Cyber	Security	 3L:0T:	4P	 5	credits	 Pre-Reqs:	
Introduction	to	
Programming,	
Data	Structures	&	
Algorithms,	
Operating	
Systems,	
Networking	

	

Learning	Outcomes	of	the	course	(i.e.	statements	on	students’	understanding	and	skills	at	the	
end	of	the	course	the	student	shall	have):	

Having	completed	this	course,	a	student	should	be	able	to:		

Essential	(<=6):	

1. Understand	the	importance	of	cyber	security	(data	confidentiality,	Integrity,	and	Availability)	
and	various	recent	attacks	on	important	digital	systems	such	as	banking,	e-commerce	systems,	
e-governance	systems	etc.		

2. Understand	basic	 cryptography	 concepts	–	 symmetric	 vs	 asymmetric	 cryptography,	Public	
Key	Crypto	Infrastructure	(PKI),	Symmetric	Ciphers,	Hashing,	Digital	Signatures.	

3. Understand	methods	and	tools	for	authentication,	authorization,	privilege,	and	their	needs	in	
securing	an	organization’s	IT	system.	

4. 	Understand	the	common	vulnerabilities	in	applications,	web	applications,	network,	and	the	
Internet	Infrastructure.	

5. Understand	 the	 methods	 and	 tools	 for	 Intrusion	 Detection	 (network	 and	 host	 intrusion	
detection)	and	perimeter	security	(firewall).	

6. Understand	basic	malware	functions	and	indicators	of	compromise.		

	
Desirable/Advanced	(<=	3):	
	

1. Understand	 basic	 mobile	 application	 security	 issues	 and	 android	 platform	
architecture	for	securing	app	execution	.	

2. Understand	wireless	LAN	security	issues.	
	

	

	

63	

	

	Detailed	contents	for	Essential	Learning	Outcomes:		

Module	(appx	dur	
in	wks)	

Topics	 Pedagogy	/	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	1:	
Introduction	and	
basic	terminology	

(~1	wks)	

Cyber	Security	and	CIA	Triad,	basic	
cyber	threats	to	CIA,	cyber-attack	
surfaces,	recent	cyber-security	
incidents	and	their	high-level	
analysis	

Example	Driven	
Lectures	with	
examples	
drawn	from	
most	recent	
incidents	

None	

Module	2:		
Basic	Cryptography		

(1	-	2	wks)	

Role	of	Cryptography	in	ensuring	
confidentiality	for	data	at	rest,	data	
in	motion,	and	data	in	process.		

Symmetric	and	Asymmetric	
Cryptography,	their	needs	as	
complementary	of	each	other,	
some	basic	symmetric	and	
asymmetric	algorithm	outlines	
(RSA,	DH,	DES,	AES)		

Role	of	cryptography	in		data	
integrity,	non-repudiation		

Hashing	and	Digital	Signature	and	
some	example	hash	function	
outlines	(MD5,	SHA-256),	
understanding	digital	signature	
and	its	role.		

Digital	Certificate	and	PKI.		

Importance	of	the	role	of	a	proper	
Pseudo	Random	Number	
Generator	

Provide	good	
intuition	than	
nitty	gritty	of	
algorithms,	or	
going	through	
ciphers	in	
details.	The	
intuition	
behind	PKI,	
Digital	
Certificate.		

Using	library	
functions	to	use	
RSA,	AES,	SHA-
256	and	show	the	
result	of	
encryption,	
Hashing	etc.		

Taking	apart	a	
digital	certificate	
and	show	the	
various	
components	and	
their	significance		

	

Module	3:	
Authentication,	
Authorization	and	
Privilege	(1	week)		

Importance	of		strong	
Authentication,	distinction	
between	authorization	and	
authorization,	importance	of	
authorization,	access	control,	
Mandatory	and	Discretionary	
Access	control,	role	based	

Intuition	of	
distinguishing	
between	
authorization	
from	
authentication,	
access	control	
lists,	MAC	vs	

Lab	on	2	factor	
authentication,		

Lab	on	privilege	
escalation	
example		

64	

authorization,	privilege	and	
privilege	escalation		

DAC	with	
examples,	
importance	of	
distinct	
privileges,	
principle	of	
least	privilege,	
show	example	
of	privilege	
escalation		

Module	4:		
Application	Security	
(4-5	weeks)		

Basic	application	vulnerabilities	
(Buffer	overflow,	Integer	Overflow,	
format	string	vulnerability)	,	Basic	
mitigations	of	buffer	overflow	–	
platform	bases,	compiler	based,	
secure	programming	practice	

Web	Client	Security,	Same	Origin	
Principle,	DOM,	Java	Script	
Vulnerability,	Cookies	and	Cookie	
attributes	Secure,	httponly,	
Concept	of	session	and	session	ID,	
Session	hijacking	vulnerability,	
http	vs.	https	and	SSL/TLS	and	
version	issue		

Web	Server	Security	–	XSS,	CSRF,	
SQL	Injection,	Command	Injection	
concepts,	examples	of	each	and	
mitigation	techniques		

Vulnerabilities	in	DNS,	Routing	and	
IP	protocols	especially	in	IPv4	and	
suggested	remedies	with	DNSSEC,	
S-BGP,	and	IPSec	

Intuition	of	why	
these	
vulnerabilities	
happen,	and	
how	various	
mitigation	
techniques	
have	been	
developed,	why	
the	mitigation	
techniques	are	
not	enough	and	
can	be	escaped	
by	determined	
attackers,	and	
examples	from	
real	attacks		

Lab1:	Buffer	
overflow,	integer	
overflow	and	
format	string	
vulnerability	
testing	in	
vulnerable	
applications		

Lab	2:	DVWA	
based	command	
injection.	SQL	
injection,	XSS	and	
CSRF	

	

Module	5:	
Perimeter	
protection	and	
Intrusion	Detection	
(2	weeks)			

Host	Intrusion	Detection	
techniques,	what	are	the	indicators	
to	look	for	and	how	an	SIEM	tool	
can	consolidate	such	indicators	
into	a	management	console	

Network	Intrusion	Detection	–	
signature	based	vs.	behavior	based,	
Snort		

Intuition	about	
indicators	that	
could	indicate	a	
host	as	
compromised,	
and	how	
multiple	
hosts/endpoint
s	can	be	
monitored	

Lab1:	Students	
are	asked	to	
install	Wazuh	and	
monitor	a	host		

	

Lab	2:	Students	
are	asked	to	
install	snort	and	
monitor	a	

65	

Firewall	vs.	Intrusion	Detection	
tool,	Firewall	rules	and	
customization	techniques		

Intuition	
behind	
signature	vs.	
behavior	based	
network	
monitoring	and	
detection	of	
intrusion	

Hands	on	with	
Snort	
installation		

network	on	their	
local	network	

Module	6:		
Basic	Malware	
Analysis	(1	week)		

Various	malware	classes	and	their	
characteristics	

Difference	between	static	analysis	
and	dynamic	analysis	

Signature	vs.	behavioral	detection	
techniques		

Intuition	about	
various	
malware	
classes	and	
their	modus	
operandi,	
discuss	why	
static	and	
dynamic	
analysis	
complement	
each	other,	
what	kind	of	
information	is	
obtainable	from	
static	vs.	
dynamic	
analysis,	
demonstrate	
some	static	
analysis	tools		

Lab	1:	US	static	
analysis	tools	to	
find	how	an	
executable	can	be	
analyzed.	

	

Detailed	Contents	for	Desirable	Learning	Outcomes	(optional,	<=	3	modules):		

Module		 Topics	 Pedagogy	teaching	
suggestions	

Nature	of	lab	
/	assignment	
/	practice	

Module	7:	
Mobile	
Application	
Security	

Basic	mobile	attack	surface	and	
the	ideas	of	permissions,	and	
their	abuse	

Provide	intuition	on	
mobile	malware	and	how	
they	work,	give	example	of	
mobile	malware	attacks,	

None	

66	

(1	week)		 Execution	model	of	mobile	apps	
in	Android	(Sandboxing)	and	
communication	

provide	intuition	of	
execution	model	of	
Android	and	demonstrate	
Mandatory	Access	Control	
idea	in	action,	SE	Linux	
being	part	of	Android		

Module	8:	
WLAN	Security	
(1	week)		

Some	common	ways	WLAN	are	
compromised	including	weak	
cipher	such	as	WEP,	evil	twin	
attack,	unauthorized	access	point	
based	attacks	(rogue	wlan)		etc	

Provide	students	idea	
about	how	to	look	for	
signs	of	these	rogue	wlans,	
evil	twins,	public	wifi	etc.		

None	

	
	

Suggested	text	books	/	Online	lectures	or	tutorials:		

	
				1.			Ross	J.	Anderson,	Security	Engineering,	Third	Edition,	Wiley,	Nov	2020	

Suggested	reference	books	/	Online	resources:	

	
					1.	 	 	The	Web	Application	Hacker's	 Handbook:	 Finding	 and	 Exploiting	 Security	 Flaws	2nd		
	 					Edition	by	D	Stuttard	and	M	Pinto									

					2.			Cryptography	and	Network	Security	by	William	Stallings.			

					3.			The	Hacker	Playbook:	Practical	Guide	To	Penetration	Testing	(vol.	1	and	2)	by	Peter	Kim.	

	

Prepared	by:	Sandeep	K.	Shukla	(IITK),	Vinod	Ganapathy	(IISc),	Sambuddho	Chakravarty	(IIITD),	

S.	Venkatesan	(IIITA).			

The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	

significantly:	CS1,	CS3,	CS6	

Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:		
 	

67	

Core	Courses	(Additional)	
There	are	two	additional	courses,	which	are	not	part	of	the	essential	core	but	can	be	part	of	an	
extended-core.	In	other	words,	they	may	be	offered	as	core	courses,	or	as	electives	that	are	offered	
regularly	–	the	choice	is	for	the	HEI	to	decide.	

Compiler	Construction	
	
CSXXX	 Compiler	Construction	 3L:0T:	4P	 5	credits	 Pre-Reqs:	Data	

Structures	

	
Prerequisite:	C/C++/Java	programming	language.	Data	structures	and	algorithms.	Automata	
theory.	
	
Learning	Outcomes,	Essential	(<=6):	

1. To	understand	the	role,	functionality	and	structure	of	program	translation	and	
interpretation	in	software	development.	

2. To	understand	the	difference	between	abstraction	levels	of	a	high	level	language	and	a	
machine	language.	

3. To	understand	the	role	of	a	sequence	of	intermediate	representations	in	lowering	the	level	
of	abstractions	in	the	process	of	language	translation.	

4. To	get	a	firsthand	experience	of	a	practical	application	of	elegant	data	structures,	
algorithms,	and	other	core	CS	concepts	such	as	automata	theory.	

5. To	make	effective	use	of	tools	such	as	lex	and	yacc.	
6. To	become	a	much	better	programmer	by	appreciating	all	that	happens	behind	the	scenes	

in	making	an	HLL	program	run.	
	
Desirable/Advanced	(<=	3):	

1. To	understand	some	of	the	critical	aspects	of	machine	code	generation.	
2. To	understand	the	issues	in	efficient	code	generation.	

	
	
Syllabus	for	Essential	Learning	Outcomes:	
	

Module	
(appx	dur	in	
wks)	

Topics	 Pedagogy	/	
teaching	
suggestions	

Nature	of	lab	/	assignment	
/	practice	

Module	1:	
Introduction	
to	Compilers	

(1	week)	

Comparing	abstractions	of	a	
high	level	language	and	a	
low	level	language;	
compilation	as	a	series	of	
steps	for	lowering	the	
abstraction	level	through	
stepwise	refinement;	phases	
of	compilation;	

Sections	1.1	and	
1.2	from	the	
textbook,	online	
resources	[2]	and	
[3].	

Viewing	the	intermediate	
representations	and	the	final	
assembly	code	generated	by	
GCC/LLVM,	relating	them	to	
the	input	program	

	

68	

bootstrapping;	cross-
compilation.	 Programming	Assignment	

#A0.	

Module	2:	
Lexical	
Analysis	

(2	weeks)	

The	role	of	lexical	analysis;	
Token,	lexemes,	and	token	
codes;	Regular	Expressions	
(RE)	to	represent	tokens,		
Deterministic	finite	
automata	(DFA),Traversing	
a	DFA	for	recognising	
tokens;	Generating	a	lexical	
analyzer	using	lex/Flex.	

Sections	3.1,	3,2,	
3.4.4,	3.5,	3.6,	
3.8.1,	3.8.3	from	
the	textbook.	

	

	

Writing	lex	specifications	and	
generating	tokens	for	a	given	
language,		

	

Programming	Assignment	
#A1.	

Module	3:	
Syntax	
Analysis	

(3	weeks)	

Context	Free	Grammars	
(CFG),	Concept	of	parsing,	
sentences	and	sentential	
forms,	leftmost	and	
rightmost	derivations,	parse	
trees,	ambiguous	grammars;	
Overview	of	top-down	and	
bottom-up	parsing;		

	

Option1:	Introduction	to	
shift	reduce	parsing;	viable	
prefixes	and	valid	items,	
Constructing	LR(0)	sets	of	
items;	Constructing	SLR	
parsing	tables;	Generating	a	
parser	using	a	parser	
generator	such	as	
Yacc/Bison.		

	

Option	2:Top-down	
parsing,Left	factoring,	
Elimination	of	left-recursion,	
predictive	parsing,	recursive	
descent	parsing,	LL(1)	
parsing.	Generating	a	parser	
using	a	parser	generator	
such	as	ANTLR,	JavaCC,	etc.		

This	module	is	
driven	by	the	
chosen	parser	
generator.	If	
Yacc/Bison	is	
chosen,	the	
module	should	
cover	bottom	up	
parsing.	If	Antlr	
or	JavaCC	is	used,	
the	module	
should	cover	top	
down	parsing.	

	

Sections	4.1,	4.2,	
4.3	from	the	
textbook.	

	

Option1:	Sections	
4.5,	4.6	from	the	
textbook.	

	

Option2:	Section	
4.4	from	the	
textbook.		

Writing	yacc	specifications,	
generating	a	parser	by	using	
the	scanner	generated	in	
module	2.	

Precise	error	reporting	using	
yytext	and	yylineno.	

Using	a	command	line	switch	
to	optionally	print	token	
details.	

	

Programming	assignment	
#A2.	

Module	4:	
Semantic	
Analysis	

(1	weeks)	

The	need	of	semantic	
analysis;	abstract	syntax	
trees	for	expressions,	
assignment	statements	and	
control	flow	statements;		

Sections	5.1,	5.2,	
5.3,	5.4,	and	6.1	
from	the	
textbook.	

Writing	a	type	checker	to	
ensure	that	a	syntactically	
correct	MMC	program	is	
type-safe.	

	

69	

attribute	evaluation,	syntax	
directed	translation	
schemes	(STDS);	

Programming	Assignment	
#A3.	

Module	5:	
Applications	
of	Semantic	
Analysis	

(3	weeks)	

Applications	of	SDTS	for		

(a)	declaration	processing	
and	type	checking,		

(b)	generating	three-
address	code	

Sections	6.2,	6.3,	
6.4,	6.5.1,	6.5.2,	
6.9	from	the	
textbook.	

Write	a	translator	to	
translate	a	type-checked	
MMC	program	to	equivalent	
three-address	code.	

Programming	Assignment	
#A4.	

Module	6:	
Run	time	
support	(1	
week)	

Parameter	passing	by	value,	
reference,	and	name;	
activation	records,	stack	and	
static	allocation	of	activation	
records;	translating	a	
function	call,	allocating	
offsets	to	variables,	
generating	code	for	function	
prologue,	function	epilogue,	
call	sequence,	and	return	
sequence.	

Sections	1.6.6,	
7.1,	7.2.2,	7.2.3	
from	the	
textbook,	Chapter	
6.1	from	the	
reference	book	
and	online	
material	[4].	

Not	Applicable	

Module	7:	
Introduction	
to	Code	
Optimization	

(1	week)	

Control	flow	graphs;	Local	
optimizations	(common	
subexpression,	copy	
propagation,	dead	code	
elimination).	

The	focus	of	this	
module	is	on	
knowing	the	
optimizations	
and	not	on	the	
techniques	of	
performing	them.	

The	desirable	
part	would	need	
an	additional	one	
week.	

Section	9.1	from	
the	textbook..	

Not	Applicable	

Module	8:	
Code	
Generation		

(2	weeks)	

Generating	assembly	code	
from	three	address	codes	
using	simple	register	
allocation	and	instruction	
selection.	

By	simple	
register	
allocation,	we	
mean	that	all	the	
values	of	
temporaries	are	
held	in	registers	
across	three	
address	code	
statements	but	

	

70	

not	those	of	
source	variables.	

Sections	8.1,	8.2,	
8.6	in	the	
textbook.	

	
	Syllabus	for	Desirable/Advanced	topics.	
	

Module	(appx	dur	
in	wks)	

Topics	 Pedagogy	/	
teaching	
suggestions	

Nature	of	lab	/	
assignment	/	
practice	

Module	2:	Lexical	
Analysis	

(2	weeks)	

4-arrays	representation,	observing	
the	data	structures	in	the	scanner	
generated	by	lex.	

Section	3.9.8	
from	the	
textbook.	

	

Module	3:	Syntax	
Analysis	

(3	weeks)	

LR(1)	and	LALR(1)	parsing	and	
the	option	not	chosen	in	the	
default	offering	

Section	4.7	
from	the	
textbook.	

Error	recovery	using	
the	error	token	in	
yacc	and	emitting	
meaningful	error	
messages.	

Module	7:	
Introduction	to	
Code	Optimization	

(1	week)	

Global	optimization	(constant	
propagation,	common	
subexpression	elimination,	copy	
propagation,	dead	code	
elimination,strength	reduction)	

	

Sections	9.2.5,	
9.2.6,	9.4.1,	
9.4.2,	9.4.3,	
9.4.6,	in	the	
textbook.	

	

Module	8:	Code	
Generation		

(2	weeks)	

Register	allocation	using	graph	
colouring,	Optimal	code	
generation	for	expression	trees,	
Sethi	Ullman	algorithm,	

Aho	Johnson	algorithm.	

Sections	8.8.1,	
8.8.4,	8.10,	
8.11	in	the	
textbook.	

Write	a	translator	to	
translate	code	in	3-
address-code	form	to	
assembly	code.	

Programming	
Assignment	#A5	

	
	
	
Lab/Assignment	Details	
	
A0:		Write	5	simple	test-cases	in	MMC	and	then	inspect	the	generated	code.	
A1:		Write	a	lexer	to	recognize	valid	tokens.	
A2:		Write	a	parser	to	parse	the	given	input	MMC	program.	
A3:		Write	a	type-checker	for	a	syntactically	correct	input	MMC	program.	

71	

A4:		Write	a	Translator	that	takes	a	type-checked	MMC	program	and	generates	equivalent	IR	code	
inTACoC	format;	TACoC	is	a	subset	of	MMC	such	that	code	is	in	a	form	similar	to	three	address	code.	
Details	of	TACoC	is	given	towards	the	end	of	this	section.	
A5:		Generate	MIPS	code.	Use	the	SPIM	simulator	to	run	the	code.	
				 		
Suggested	 Pedagogy	 for	 the	 lab/assignments:	
	

1. The	instructor	is	expected	to	prepare	a	set	of	test-cases	for	assignments	A1-A5.	
2. For	 A1,	A2,	 and	 A3	 –	 the	 test	 cases	 should	 include	 some	 test-cases	which	 throw	 lexical,	

syntactical	and	type	errors,	respectively.	
3. For	 input	 test-case	 design	 the	 expected	 output	 and	 write	 a	 script	 to	 verify	 the	 output	

generated	by	the	student	assignment.	
4. For	each	assignment,	the	student	should	use	a	script	to	build	their	code	(using	a	Makefile/ant	

build	script/shell	script).	The	instructor	must	create	some	sample	scripts	and	teach	the	same	
to	the	students.	

5. The	instructor	should	create	a	reference	implementation	for	A1-A5.	
6. The	implementation	can	be	done	in	Flex+Bison	or	Antlr	or	JavaCC.		

	
	
Details	of	MMC	and	TACoC	
	
MMC	is	a	simple	variant	of	C,	and	has	many	simplifications.	This	along	with	the	simplified	nature	of	
TACoC	ensures	that	the	compiler	can	be	written	within	a	short	span	of	time.	Further	details	about	
this	can	be	obtained	from:		
http://www.cse.iitm.ac.in/~krishna/aicte-compiler-design/Lab-Syllabus.docx
	
	
Texts	and	Other	Material	
	

1. [Text	book]	Aho,	Lam,	Sethi,	and	Ullman.	Compilers:	Principles,	Techniques,	and	
Tools.	2/e,	Addison-Wesley,	2006.	

2. [Reference	book]	Andrew	Appel	and	Jens	Palsberg.	Modern	Compiler	
Implementation	in	Java.	2/e,	Cambridge	University	Press,	2002.	

3. https://en.wikipedia.org/wiki/Cross_compiler.	
4. https://en.wikipedia.org/wiki/Bootstrapping_(compilers)	
5. https://en.wikipedia.org/wiki/Function_prologue_and_epilogue	

	
	
 	

72	

Theory	of	Computation	
	
CSXXX	 Theory	of	Computation	 3L:1T:	0P	 4	credits	 Pre-Reqs:	Discrete	

Maths,	Data	
Structures	

	
	
Essential	Learning	Objectives:	

1. Understand	models	and	abstractions:	automata	as	a	basic	model	of	computation	
2. Link	between	languages,	automata,	and	decision	problems.	
3. How	to	build	new	models	from	old	ones:	product,	union,	closure	properties.	
4. Argue	about	limitations	of	computational	models.	
5. Understand	 algebraic	 formalisms	 of	 languages	 such	 as	 regular	 expressions,	 context-free	

grammar.	
6. Understand	algorithms	and	computability	through	the	lens	of	Turing	machines.	
7. Existence	of	unsolvable	problems	and	what	that	means.	
8. Relations	between	the	various	computational	models.	

	
Advanced/Desirable	Learning	Outcomes	
		 Nil	
	

Module	
(appx	dur	in	
wks)	

Topics	 Teaching	
Suggestions	

Learning	outcomes	

Module	1:	
Finite	
Automaton	

(4-5	wks)	

-Why	automata	theory?		

-Alphabets,	formal	languages,	
and	problems.	

-What	are	regular	languages	
and	automata	models	for	
them:	Deterministic	Finite	
automaton,	Formal	argument	
of	correctness,	Regular	
languages	

-Properties	of	regular	
languages-Closure,	
properties,	product	
construction	

-Limitations	of	Automata	
Non-regularity,	Pumping	
Lemma	

-Sec	1.1	of	T2		

-Sec	1.2,	1.5	of	T2	

	

-Sec	1.1	of	T1	

	

	

	

-Sec	1.1	of	T1	

	

-Sec	1.4	of	T1	

	

-Sec	1.2	of	T1	

F.	Familiarity	with	
notations.	

U.	Give	examples	of	
languages,	regular	
languages.		

U.	Design	finite	automata,	
both	deterministic	and	
nondeterministic	for	a	
given	language.	

R.	Write	formal	proof	of	
correctness	of	a	DFA	

U.	Give	examples	of	non-
regular	languages	and	
prove	that	language	is	
non-regular	using	
pumping	lemma	

73	

-Non-deterministic	Finite	
Automaton,	Subset	
construction,	Equivalence	
with	DFAs.		

-Regular	expressions.	
Equivalence	with	regular	
languages.		

-Algorithms	for	regular	
languages,	Minimization	and	
its	algorithm.	

-(suggested)	Myhill-Nerode	
relations,	Characterization	of	
regular	languages		

	

	

	

-Sec	1.3	of	T1	

	

-Sec	4.3,	4.4	of	T2	

	

	

-Lecture	15,16	of	R1	

+applications	of	
automata	to	text	
search	and	NLP	

+applications	of	
regular	expressions	
for	text	search	in	
UNIX.	

Advanced	Topics:	

-	2DFAs,	Equivalence	
with	DFAs	using	
Myhill-Nerode	
Relations	(Lecture	
17,18	of	R1)	

F.	Understand	the	
difference	between	
determinism	and	
nondeterminism	

U.	Use	closure	properties	
to	show	non-regularity	

U.	Design	regular	
expressions	

U.	Use	the	minimization	
algorithm	to	minimize	a	
given	DFA		

U.	(suggested)	Apply	
Myhill-Nerode	Theorem	
to	show	that	a	language	is	
regular	or	non-regular	

74	

Module	2:	
Grammars,	
Context-free	
Languages	
and	machine	
models.	

(4-5	wks)	

-Grammars	and	the	
motivation	from	language	
theory.	

-Context-free	grammars,	
closure	properties.	Chomsky	
Normal	Form	for	CFGs.		

-PDAs.	Empty-stack	vs	Final	
state	acceptance	conditions.	
Equivalence	of	PDAs	and	
CFGs.	

-Limitations	of	PDA	
computation,	non	context-
free	language.	Pumping	
Lemma	for	CFLs.		

-Deterministic	CFLs	and	
PDAs.	

-(suggested)	CYK	Algorithm	
for	parsing	of	CFLs.	

	

-Sec	2.1	of	T1	

	

	

-Sec	2.1	of	T1	

	

-Sec	2.2	of	T1	

	

	

-Sec	2.3	of	T1	

	

-Sec	2.4	of	T1	

	

-Sec	7.4	of	T2	

+applications	to	
parsers	and	
compilers.	

Advanced	Topics:	

-	Ogden’s	Lemma.		

		

U.	Design	CFGs	and	PDAs	
for	CFLs	

R.	Prove	correctness	of	
CFGs	

F.	Understand	that	
regular	languages	are	a	
subset	of	CFLs.	

R.	Prove	equivalence	of	
CFGs	and	PDAs	

U.	Argue	a	language	is	
non-CFL	using	pumping	
lemma	

	

F.	Familiarity	with	DPDAs	

U.(suggested)	
Construction	of	DPDAs	

	

U.	(suggested)	Parsing	
using	CYK	algorithm	

75	

Module	3:	
Turing	
machines	
and	
Computabilit
y,		

(4-5	wks)	

	

-Modeling	computation	using	
Turing	Machines.	Equivalent	
models.	Church	Turing	
Hypothesis.	

-Decidability	and	Turing	
recognizability	(i.e.,	recursive	
and	recursively	enumerable).	
Closure	properties.	

-Undecidability	by	
diagonalization.	

-Reductions	to	show	
undecidability.	Examples	of	
reductions.	

-Resource	bounded	Turing	
machines	&	Intro	to	
Complexity.	Basic	complexity	
classes.	Time	bounded	
classes:	P,	NP,	EXP.	

-(suggested)	Post’s	
correspondence	problem	and	
other	undecidable	problems	

-(suggested)	Polytime	
reductions,	NP-
completeness,	Cook-Levin	
Theorem	without	proof	

-Sec	3.1,	3.2,	3.3	of	T1	

	

	

-Sec	4.1	of	T1	

	

-Sec	4.2	of	T1	

	

-Sec	9.3	of	T2.	Sec	
5.1,	5.3	of	T1.		

	

-Sec	7.1	of	T1	

	

	

-Sec	5.2	of	T1	

	

-Sec	7.3,	7.4,	7.5	

	

Advanced	Topics:		

-	Rice’s	Theorem	

-	Space	bounded	
computations	and	
complexity,	PSPACE	

F.	Understand	relation	
between	the	various	
classes	such	as	decidable,	
Turing	recognizable.,	co-
Turing	recognizable.	

F.	Give	examples	of	
decidable	languages,	
undecidable	languages,	
Turing	recognizable	
languages.	

U.	Prove	a	language	is	
undecidable	by	reduction	
from	a	known	
undecidable	problem	

F.	Relation	between	basic	
complexity	classes	

	

	

F.	(suggested)	Scenarios	
in	which	the	reductions	
are	used	

	

R.	(suggested)	Proving	
languages	are	NP-
complete	using	
reductions	

	

	

	

	

	
 	

76	

Notations:	
● Topic	 Categorization:	

Compulsory	 -	 Topics	 that	 should	 be	 covered.	
Suggested	 -	Optional	topics	that	the	instructor	can	choose	from	given	availability	of	time.	
Advanced	-	Advanced	topics	in	each	module	that	an	instructor	can	teach	depending	on	the	
interest	of	the	class.		
	

● +	indicates	applications	that	could	be	mentioned	in	the	class.	
	

● Learning	Outcome	Categorization:		
Familiarity	-	Student	should	be	able	to	identify	and	comprehend	what	the	topic	is	about.	This	
corresponds	to	the	cognitive	levels	of	knowledge	and	comprehension	of	Bloom's	taxonomy	
(see	 e.g.,	 https://en.wikipedia.org/wiki/Bloom's_taxonomy).	
Usability	-	Student	should	be	able	to	understand	how	a	particular	idea/topic	can	be	used,	to	
solve	problems,	design	examples,	etc.	This	corresponds	to	the	cognitive	levels	of	application	
and	 synthesis	 of	 Bloom's	 taxonomy.	
Reasoning	-	Student	should	have	a	deeper	understanding	of	a	particular	concept	and	why	it	
works.	 This	 corresponds	 to	 the	 cognitive	 levels	 of	 analysis	 and	 synthesis	 of	 Bloom's	
taxonomy.	

	

Nature	of	lab	/	assignment	/	practice	/	tutorial:	

1.	 Make	 assignments	 using	 the	 books.	 To	 test:	
	 -	 what	 was	 done	 in	 the	 class	
	 -	whether	the	student	can	think	and	apply	the	concepts.	

2.	Tutorials:	Weekly	problem-solving	sessions.	

Suggested	textbooks:	

1. Introduction	 to	 the	 Theory	 of	 Computation,	 3rd	 edition.	 Michael	 Sipser,	 Cengage	
Publications	(Low-cost	Indian	edition	available).	

2. Introduction	 to	 Automata,	 Theory,	 Languages	 and	 Computation.	 Third	 Edition.	 John	
Hopcroft,	Rajeev	Motwani,	Jeffrey	D.	Ullmann,	Pearson	Publications	(Low-cost	Indian	edition	
available).	

	
Additional	Reference	Material:	
1. Automata	and	Computability,	Dexter	C.	Kozen.	Part	of	the	Undergraduate	Texts	in	Computer	

Science	book	series	(UTCS),	Springer.	
2. Elements	of	the	Theory	of	Computation,	2nd	edition.	Harry	Lewis,	Christos	Papadimitriou,	

Prentice	Hall.	
	
	
	
	

77	

	
Prepared	by:	Jayalal	Sarma,	IIT	Madras.	S	Akshay,	IIT	Bombay.	Raghunath	Tewari,	IIT	Kanpur.	
	
	
The	Discipline	Graduate	Attributes	(GAs)	to	which	this	course	contributes	significantly:	CS4	
	
Other	discipline	GAs	to	which	this	course	may	contribute	somewhat:	CS2	

 	

78	

Professional	Electives	and	Micro	Specializations	
Besides	the	core	courses,	programs	normally	have	professional	elective	courses.	Each	HEI	decides	
the	electives	it	can	or	wishes	to	offer.	We	suggest	that	these	electives	be	included:	
	

• The	key	courses	of	some	of	the	micro	specializations	(discussed	below)	
• A	course	on	Advanced	Mobile	Communications	

	
A	micro-specialization	 is	 to	provide	a	 limited	specialization	 in	some	sub-area	of	CSE,	by	offering	
suitable	electives.		The	goal	of	the	micro	specialization	is	to	provide	deeper	understanding	and	skill	
development	in	that	area,	and	can	provide	multiple	pathways	to	students,	as	different	students	can	
graduate	with	different	specializations	(or	not).	The	areas	in	which	micro	specialization	are	offered	
should	be	aligned	to	industry	careers	or	higher	studies.	
	
A	micro	specialization	for	CSE	is	defined	as	follows:	
	

● It	has	a	core	course	as	the	head	(starting)	course	for	the	micro	specialization	
● It	has	a	clearly	defined	goal,	and	learning	outcomes	for	the	goal	
● It	can	have	2	+/-	0.5	additional	courses	(besides	the	head	course)	in	the	sub-area	aligned	to	

the	goal.	These	courses	can	be	full	course	(4-credits)	or	half-course	(2	credit),	and	can	be	
taken	as	electives	by	students	(or	extra	credits.)		

	
Based	 on	 the	 discussions	 and	 inputs,	 a	 few	desired	micro-specializations	were	 identified.	 For	 a	
subset	of	these,	a	possible	design	of	the	micro-specialization	is	provided	below.	It	should	be	pointed	
out	 that	the	 list	of	courses	 in	a	specialization	 is	 illustrative	–	an	 Institution	can	replace	or	add	a	
course	aligned	to	 the	micro	specialization	goal.	 Institutions	can	also	define	a	set	of	courses	 for	a	
micro	specialization	and	require	that	a	subset	be	taken,	with	perhaps	one	being	compulsory.	
	
It	should	be	added	that	HEIs	are	completely	free	to	decide	whether	to	offer	micro	specializations	or	
not,	 and	 if	 they	 decide	 to	 offer,	 which	 areas	 to	 provide	 the	 specialization	 in.	 How	 the	 micro	
specialization	is	to	be	reflected	in	a	student’s	records/certificates	is	also	to	be	decided	entirely	by	
HEIs	based	on	their	policies	and	practices.		
	
Note	that	the	list	of	additional	courses	mentioned	in	the	micro	specializations	also	provide	a	list	of	
suggested	 professional	 electives.	 However,	 there	 can	 be	 electives	 which	 are	 not	 a	 part	 of	 any	
specialization.	
 	

79	

Software	Engineering	Micro	Specialization	
	
Goal:	The	aim	of	this	specialization	is	to	provide	an	understanding	of	the	importance	and	role	of	
software	engineering,	an	understanding	of	the	important	sub-areas	of	software	engineering	(SE),	
and	to	provide	a	deeper	understanding	of	some	of	them.	

Learning	outcomes	of	the	specialization:	

1. Understand	 the	 role	 and	 importance	 of	 software	 engineering	 in	 developing	 industrial	
strength	software,	and	the	important	tasks	involved	in	engineering	such	software.	

2. Ability	to	apply	proper	SE	practices	to	develop	in	a	team	a	working	software	system	to	solve	
some	users’	problem.	

3. Understand	and	apply	 concepts	 in	 some	 sub-areas	of	 SE	 like	 testing,	maintenance,	 open	
source	software,	model	based	development,	requirements	engineering,	etc.	

Base	Course	for	this	specialization	(core	course):	 Advance	Programming	

Courses	(Electives)	Proposed	for	the	Specialization:		

(The	courses	for	a	micro	specialization	can	be	full	course	(4-credits)	or	half-course	(2	credit).	The	
total	number	of	courses	suggested	is	2	+/-	0.5.)	For	this	specialization,	it	is	suggested	that	the	first	
course	should	be	required,	followed	by	2	half	courses	in	some	sub-areas	of	SE.		
	

Course	Name	(full	
/	half)	

Purpose/Goal	 Topics	

Software	
Engineering	(full)	

To	explain	the	iterative	software	
development	process	and	different	
aspects	of	it	(e.g.	short	cycles,	agile	
approaches,	test-driven-
development,	etc),	and	to	apply	the	
concepts	to	a	team	project	to	
develop	software	

Iterative	software	development	
process,	basic	project	planning	for	
such	a	process,	requirements	
including	user	interface,	
architecture	and	design,	coding	
using	modern	IDEs,	testing,	
integration	and	deployment	

Software	testing	
(half)	

Go	deeper	in	software	testing,	
including	some	modern	tools	

	

Unit	testing	and	the	test	
frameworks,	test	case	design	(incl.	
black	box	and	white	box),	non-
functional	testing,	test	automation	
and	tools,	related	metrics	(e.g.	
coverage,	performance,	e.g.)	

Open	Source	
Software	(half)	

To	expose	to	students	open	source	
software	practices	and	ecosystem,	
and	to	expose	them	to	using	them	

OSS	evolution,	current	situation,	
general	OSS	practices,	common	OSS	
platforms	and	how	to	use	them,	
small	project	on	some	OSS	platform	
(e.g.	GitHub)	

80	

Software	
Maintenance	(half)	

To	explain	the	software	
maintenance	cycle	and	different	
aspects	of	it,	and	develop	
capabilities	in	them	

Defect	cycle	and	bug	management,	
regression	testing,	change	
management,	refactoring,	software	
evolution,	related	metrics,	etc.	

Prepared	by:	Pankaj	Jalote	(IIIT-Delhi),	Raghu	Reddy	(IIIT	Hyderabad),	Vinay	Kulkarni	(TCS),	

Meenakshi	Dsouza	(IIIT	Bangalore)	

	

	
 	

81	

Machine	Learning	Micro	Specialization	

Goal:	The	aim	of	this	specialization	is	to	provide	an	understanding	of	the	importance	of	machine	
learning	in	computer	science,	expose	the	advances	in	machine	learning,		and	also	to	demonstrate	
the	practical		role	of	machine	learning	in	related	domains	in	artificial	intelligence.		This	
specialization	also	aims	at	providing	deeper	understanding	of	some	of	the	sub	areas,	deeper	
analytical	concepts,		and	the	recent	advances.	

Learning	outcomes	of	the	specialization:	
1. Appreciate	the	role		of	machine	learning	in	computer	science	and	data-driven	problem	

solving.	
2. Appreciate	the	role	of	recent	and	advanced	machine	learning	algorithms	and	formulations		

in	solving	problems	of	practical	importance.	Expose	students	to		principled	ways	of	
practising	machine	learning	in	many	unstructured	real	world	problem	settings.		

3. Ability	to	apply	principles	of	ML		to	develop	practical	solutions	to	problems	seen	around	in	
industry,	society	and	research,	focusing	on	problem	formulation,	solution	design,	
implementation	and	experiencing	the	empirical	design	process.	

4. Providing	practical	experience	in	use	of	popular	machine	learning	libraries	and	
implementations.	Get	the	students	trained	in	the	empirical	science	behind	the	design	of	
machine	learning	based	solutions.		

Base	Course	for	this	specialization	(core	course):	
1. Machine	Learning	

Courses	(Electives)	Proposed	for	the	Specialization:	

Note:	The	courses	for	the	specialization	can	be	full	course	(4-credits)	or	half-course	(2	credit).	The	
total	number	of	courses	suggested	should	be	2	+/-	0.5.	

		

Course	Name	(full	
/	half)	

Purpose/Goal	 Topics	

Advanced	Machine	
Learning	(full)	

-	To	introduce	and	be	familiar	
with	the	popular	deep	learning	
architectures.	

	

-	To	expose	the	popular	problem	
formulations	beyond	simple	
supervised	learning	used	in	
situations	of	data	scarcity,	
domain/distribution	shift	etc.	
using	the	popular		ML/DL	
algorithms.	

-	CNNs,	RNNs,	Auto	Encoders,	Loss	
Functions	and	Training.	

	

-	Transfer	learning,	domain	
adaptation,	semi-supervised	
learning,	active	learning,	self-
supervised	learning,	incremental	
learning,	few-shot	learning		

	

Laboratory	experiments	to	
appreciate	the	utility	

82	

	

Computer	Vision	or	
Natural	Language	
Processing	(Full)	

-	To	introduce	a	sub-area	of	
Artificial	Intelligence	(perception)	
where	machine	learning	
formulations	get	extensively	used.	

-	Appreciate	how	ML	has	
influenced	the	problems	in	this	
area,	and	how	the	type	of	
data/problems	in	this	area	
demanded	newer	solutions	in	ML.	

-	Formulations	based	on	
classification,	regression,	structured	
prediction	in	sub-tasks	of	CV/NLP.	

-	Role	of	data	and	learning	in	
Feature/Embedding.		

-	Laboratory	experiments	to	
appreciate	the	utility	

-	Encourage	Course	Project	

Programming	for	
Machine	Learning	
(half;	Lab	Course)	

-	To	expose	students	to	popular	
ML	libraries	and	frameworks	
such	as	PyTorch	and	Tensorflow).	
To	develop	empirical	skills	in	
design	and	implementation	of	ML	
solutions	

-	To	strengthen	the	hands-on	skill	
of	the	student.		

-	Programming	in	popular	libraries,	
Use	of	Cloud,	GPUs,	
Debugging/Visualization.	Working	
on	large	datasets.		

-	Programming	intensive.	Use	of	
popular	(in	industry,	research)	
frameworks	and	tools	expected.	

Notes:	

1. To	strengthen	the	micro	specialization,	students	may	be	encouraged	to	do	the	BTech	
Project	(or	Internship	or	a	summer	project)	in	this	area	if	the	regulations	(credit	system)		
allow.		

2. Second	course	may	be	adapted	to	the	strength	of	the	department	as	an	“Applied	Machine	
Learning	Course	''	in	an	area	of	expertise	in	the	department.	However,	the	focus	is	on	the	
use	of	ML	formulations	in	this	course.		

	
Prepared	by:	Prof.	C.	V.	Jawahar	(IIIT	Hyderabad),	Prof.	P.	J.	Narayanan	(IIIT	Hyderabad)	
 	

83	

Distributed	and	Cloud	Systems	Micro	Specialization	

Goal:	 The	 aim	 this	 specialization	 is	 to	provide:	 an	understanding	of	 the	 importance	 and	 role	of	
distributed	 computing	 and	 data	 systems,	 an	 understanding	 of	 the	 important	 sub-areas	 of	 these	
systems	such	as	cloud	computing	and	big	data	platforms,	a	deeper	understanding	of	their	concepts,	
and	the	practical	aspects	of	building	applications	for	such	systems.	The	aim	of	this	specialization	is	
to	introduce	important	topics	and	themes	of	distributed	systems	and	cloud	computing,	both	from	a	
theoretical	and	a	practical	perspective.	

Learning	outcomes	of	the	specialization:	

1. Understand	the	need	for	and	the	models	of	distributed	systems,	and	ability	to	access	remote	
applications	and	data	over	the	network.	

2. Understand	 key	 concepts	 for	 building	 scalable,	 reliable	 and	 consistent	 distributed	
applications.	

3. Understand	the	design,	implementation,	deployment	and	use	of	distributed	computing	and	
data	platforms.	

4. Understand	the	models	of	Cloud	computing,	enabling	technologies	and	how	to	build	Cloud	
native	applications	

Base	Course	for	this	specialization	(core	course):	

Computer	Networks	and/or	Operating	Systems		

Courses	(Electives)	Proposed	for	the	Specialization:		

The	courses	for	the	specialization	can	be	full	course	(4-credits)	or	half-course	(2	credit).	The	total	
number	of	courses	suggested	should	be	2	+/-	0.5.		
	

Course	Name	(full	
/	half)	

Purpose/Goal	 Topics	

Principles	of	
Distributed	
Systems	(Half	or	
Full)+	

Understand	the	need	for	and	the	
models	of	distributed	systems,	
and	ability	to	access	remote	
applications	and	data	over	the	
network.	

Understand	key	concepts	for	
building	scalable,	reliable	and	
consistent	distributed	
applications.	

Need	for	distributed	systems,		models	
for	coordination	among	multiple	
machines	over	the	network.	Models	of	
distributed	systems,	remote	
invocation	and	remote	storage.	

Concepts	of	performance,	scalability,	
reliability,	consistency	and	
correctness.	

Building	Cloud	and	
Big	Data	
Applications	(Full)	

Understand	the	models	of	Cloud	
computing,	enabling	technologies	
and	how	to	build	Cloud	native	
applications.	

Designing	distributed	
applications/algorithms,	Data-
Intensive	Computing	and	Data-
Oriented	Programming.	Distributed	
execution	and	runtimes.	Streaming	
data	management	and	processing.	

84	

Understand	the	design	and	use	of	
distributed	computing	and	data	
platforms.	

Remote	and	Distributed	file	systems,	
Key	Value	Storage	and	NoSQL	
Columnar	Store.	

Resource	abstraction	and	Service	
oriented	architecture,	Computing	
Abstractions	on	the	Cloud,	and	
Building	Cloud-native	applications.	

Cloud	Systems	
Engineering	(Half	
or	Full)+	

Understand	the	models	of	Cloud	
computing,	enabling	technologies	
and	how	to	build	Cloud	native	
applications.	

Cloud	services	models,	Data	center	
architecture	and	management.	
Virtualization	and	Containerization.	
Big	data	computing	platforms,	REST	
based	web	services.	

Mini-
Project/Hands-on	
Cloud	
Computing/Big	
Data	(Half)*	

Understand	the	design,	
implementation,	deployment	and	
use	of	cloud	systems	to	help	build	
distributed,	scalable	and	reliable	
applications.	

Hands-on	mini	programming	project	
that	makes	use	of	the	concepts	and	
technologies	learnt	in	the	theory	
courses.	

Notes:	

1. Either	separate	or	as	a	lab-component	of	one	of	the	other	theory	courses	
2. The	course	can	be	offered	as	half	or	full	course	depending	on	faculty	availability	

Pedagogical	References	

1. Cristina	L.	Abad,	Eduardo	Ortiz-Holguin,	and	Edwin	F.	Boza.	2021.	Have	We	Reached	
Consensus?	An	Analysis	of	Distributed	Systems	Syllabi.	In	Proceedings	of	the	52nd	ACM	
Technical	Symposium	on	Computer	Science	Education	(SIGCSE	'21).	Association	for	
Computing	Machinery,	New	York,	NY,	USA,	1082–1088.	
DOI:https://doi.org/10.1145/3408877.3432409	

2. Joshua	Adams,	Brian	Hainey,	Laurie	White,	Derek	Foster,	Narine	Hall,	Mark	Hills,	Sara	
Hooshangi,	Karthik	Kuber,	Sajid	Nazir,	Majd	Sakr,	Lee	Stott,	and	Carmen	Taglienti.	2020.	
Cloud	Computing	Curriculum:	Developing	Exemplar	Modules	for	General	Course	Inclusion.	
In	Proceedings	of	the	Working	Group	Reports	on	Innovation	and	Technology	in	Computer	
Science	Education	(ITiCSE-WGR	'20).	Association	for	Computing	Machinery,	New	York,	NY,	
USA,	151–172.	DOI:https://doi.org/10.1145/3437800.3439206	
DOI:https://doi.org/10.1145/3304221.3325536	

Prepared	by:	Yogesh	Simmhan	(IISc	Bangalore),	Purushottam	Kulkarni	(IIT	Bombay)		

	

	

85	

Human	Computer	Interaction	(HCI)	Micro	Specialization	

Goal:	The	aim	of	this	specialization	is	to	provide	an	understanding	of	the	importance	and	role	of	
user-centered	design	and	associated	techniques.	

	Learning	outcomes	of	the	specialization:	

1. Understand	the	user-centered	design	process	and	associated	techniques	to	use	it	for	
designing	and	developing	computing	based	solutions	

2. Develop	an	ability	to	start	with	an	observable	problem	in	real-life	settings	and	to	develop	a	
technology-led	solution	for	the	same.	

3. To	develop	soft	skills	such	as	empathy	for	societal	problems,	the	ability	to	think	from	
another	perspective,	learning	to	work	in	a	group	

4. To	learn	methods	related	to	observation,	interviewing,	problem	identification,	ideation,	
prototyping,	and	evaluation.	

5. To	apply	the	design	process	in	a	hands-on	scenario.	

Base	Course	for	this	specialization	(core	course):	Advanced	Programming		

Courses	(Electives)	Proposed	for	the	Specialization:	

	

Course	Name	(full	

/	half)	

Purpose/Goal	 Topics	

Introduction	to	HCI	
(full)	

To	provide	an	understanding	of	the	
importance	and	role	of	user-
centered	design	and	techniques	like	
observation,	interviewing,	problem	
identification,	ideation,	prototyping,	
and	evaluation.	

Contextual	Inquiry,	Interviews,	
Surveys,	Focus	Groups,	sketching,	
low-fidelity	prototyping,	usability	
evaluation	

HCI	semester	project	
(half)	

Give	an	opportunity	to	apply	the	
concepts	learnt	in	the	theory	course	
in	a	hands-on	project	

		

Students	will	work	on	a	project	
from	real-life-like	settings	should	be	
chosen	and	a	group	of	students	
should	be	guided	through	the	
design	process	

Interactive	Systems	
(half)	

To	develop	a	new	interaction	
technique	to	solve	a	specific	
problem	in	HCI	

Using	any	of	the	modern-day	
technologies,	like,	Virtual	Reality,	
Augmented	Reality,	Speech	
technologies,	Mobile	programming,	
Drones,	Haptic	systems,	Eye-

86	

trackers,	etc.	students	will	develop	
and	test	new	interaction	modalities.		

	Notes:	

1. If	there	is	faculty	to	offer	further	courses,	then	one/two	other	half	courses	can	be	added	to	
this	specialization	–	e.g.	HCI	for		Development	(HCI4D),	Inclusive	Design,	Learning	
Technologies,...,	

	
	
Prepared	by:	Pushpendra	Singh	(IIIT-Delhi),	Anirudha	Joshi	(IIT	Bombay)	
 	

87	

Appendix:	Recommendations	for	Using	Online	Content	in	
Courses	at	Colleges	and	Universities		

Background	

A	 lot	 of	 online	 high	 quality	 content	 is	 available	 today	 either	 free	 or	 at	 a	 low	 cost.	 Besides	 the	
government	supported	NPTEL,	we	have	companies	like	Coursera	and	EdX	who	aggregate	courses	
from	several	universities	(and	even	private	commercial	organizations)	and	offer	them	to	students	
all	 over	 the	world.	 There	 are	 other	 companies	 like	 Unacademy	who	 offer	 courses	 designed	 and	
developed	by	 them.	Further,	a	 lot	of	companies	have	online	content	available	 to	students.	These	
include	IBM,	Microsoft,	Amazon,	Infosys,	Google,	Linkedin,	Cisco,	and	so	on.	

On	the	other	hand,	most	of	the	Computer	Science	(and	related)	departments	face	serious	shortage	
of	faculty,	particularly	in	areas	where	there	is	a	significant	demand	in	the	industry.	

So,	on	one	hand,	we	have	quality	content	available	for	free	or	low	cost,	and	on	the	other	hand,	we	
don’t	have	faculty	to	teach	such	courses.	The	natural	solution	is	to	find	ways	to	use	online	content	
for	the	courses	in	the	curriculum	(with	credits).	This	way,	either	a	knowledgeable	faculty	can	“teach”	
a	much	larger	class,	or	a	faculty	member	with	inadequate	background	in	the	topic	can	still	“teach”	
the	course	better	than	what	s/he	would	have	done	without	the	support	of	such	online	content.	

Issues	

The	 online	 content	 has	 been	 around	 for	 several	 years.	 The	 regulatory	 bodies	 have	 also	 been	
encouraging	use	of	such	content	 (particularly,	NPTEL).	And	yet,	 the	online	content	has	not	been	
integrated	with	the	curriculum	in	most	colleges.	The	pandemic	has	allowed	people	to	take	a	fresh	
look	at	online	content	and	the	mental	barriers	to	using	such	content	in	the	curriculum	have	been	
breached.	At	this	time,	it	is	felt	that	a	lot	of	colleges	would	want	to	use	this	content.	However,	there	
are	 two	primary	academic	 issues	 that	need	 to	be	 addressed	(besides	 logistics,	 financial,	 and	HR	
issues).	These	are:	

1. How	do	we	decide	what	material	to	use.	This	has	two	sub-issues.	One,	what	content	would	
be	equivalent	to	the	content	that	is	mentioned	in	our	curriculum	(course	mapping).	Note	this	
is	 a	 challenge	 because	 there	 may	 not	 be	 a	 single	module	 which	 covers	 all	 parts	 of	 the	
curriculum.	So	we	may	need	to	select	more	 than	one	module.	Two,	given	 the	plethora	of	
content,	which	content	is	of	reasonable	quality.	

2. How	would	a	college	do	evaluation	of	students	in	order	to	assign	marks/grades.	

Modes	of	Learning	

There	are	several	ways	of	using	the	online	content	in	the	curriculum.	

The	simplest	mode	(Mode	1)	is	to	use	online	content	as	additional	reference	material.	In	this	mode,	
the	normal	teaching	is	anyway	being	done	and	the	faculty	is	referring	to	online	content	in	the	same	
way	he/she	would	refer	to	a	book.	This	mode	requires	no	change	or	suggestions	and	hence	is	outside	
the	scope	of	this	document.	

88	

The	next	mode	(Mode	2)	is	the	flipped	classroom	model	where	the	students	go	through	the	online	
content	 (including	 writing	 programs,	 small	 quizzes,	 etc.),	 and	 the	 local	 faculty	 takes	 discussion	
sessions	and	does	all	the	evaluation.	This	mode	still	requires	a	knowledgeable	faculty	member	to	be	
the	 instructor.	 However,	 given	 that	we	 can	 now	 reduce	 the	 contact	 hours	 for	 the	 students	 and	
faculty,	the	same	faculty	can	handle	a	much	larger	class	(or	multiple	sections	in	case	there	is	an	upper	
limit	on	the	size	of	the	class).	

The	next	mode	(Mode	3)	is	that	the	students	are	studying	only	through	the	online	mode	and	there	is	
very	little	interaction	with	the	faculty	at	the	college.	May	be	there	can	be	some	sessions	once	in	a	
while,	 but	 mostly,	 the	 role	 of	 a	 local	 faculty	 is	 only	 to	 handle	 evaluation	 (exams,	 assignments,	
projects,	etc.).	This	partially	addresses	the	issue	of	lack	of	faculty	in	certain	areas	since	the	expertise	
required	for	handling	evaluation	is	arguably	lesser	than	the	expertise	required	to	teach	the	course.	

The	last	mode	(Mode	4)	is	where	the	online	provider	does	everything,	 including	evaluations.	We	
don’t	need	any	faculty	member	at	the	college	to	offer	this	course.	We	only	need	to	decide	how	to	
translate	the	evaluation	done	by	an	outsider	to	an	equivalent	grade/marks	on	the	college	transcript.	

The	table	below	illustrate	the	four	models	in	brief.	

	

S.No.	 Model	 Local	Part	 Online	Part	 Guidelines	

1	 Reference	
Mode	

All	lectures,	
homeworks,	
evaluations	

Additional	
reference	
material		

No	additional	recommendations.		
	
This	requires	no	additional	details.		

2	 Flipped	Mode	 Discussion	
sessions,	
evaluations	

Lectures,	
Homeworks,	
Quizzes,	Project	
options,	

Requires	local	faculty	with	some	
knowledge	in	the	subject	area	
	
Large	sections/class	sizes	can	be	
handled		
	

3	 Screen	Mode	 Evaluations	 All	lectures,	
Homeworks,	
Projects	

Place	reasonable	limit	on	the	number	
of	credits	that	can	be	earned	in	this	
mode	
	
Use	in	cases	where	there	is	faculty	
shortage	in	critical	areas	

4	 Fully	online	 --	 All	lectures,	
evaluations,	
Projects,	Tests	

Place	reasonable	limit	on	the	number	
of	credits	that	can	be	earned	in	this	
mode.	
Advised	not	to	repeat	this	model	for	
the	same	course	more	than	two	
times.	

89	

Local	faculty	also	to	register	and	go	
through	the	course.	
Official	score/grade	to	be	suitably	
added	to	the	student	transcript		

	

Course	Mapping	

Each	 course	 in	 the	 curriculum	 has	 course	 outcomes	 and	 the	 content	 defined	 by	 the	 university.	
Typically,	we	may	have	some	course	outcomes	which	are	important	ones,	and	may	be	some	outcome	
which	is	desirable	or	optional.	Similarly,	the	curriculum	may	also	define	the	rough	duration	of	each	
topic.	 Sometimes	 the	 curriculum	will	 also	 include	 the	 kind	 of	 projects	 or	 assignments	 that	 the	
student	shall	be	asked	to	do	in	the	course.	

The	key	to	course	mapping	is	to	realize	that	any	two	individuals	defining	a	course	will	have	some	
differences	and	we	must	be	flexible	to	accept	differences	to	some	extent.	The	committee	trying	to	do	
course	mapping	should	have	an	understanding	of	what	are	the	important	components	(in	all	three:	
outcomes,	topics,	and	projects)	and	should	ensure	that	the	online	content	meets	all	the	important	
requirements.	But	looking	for	identical	course	would	be	usually	futile.	

Also,	what	 is	noticed	 is	 that	 typical	online	courses	are	often	available	 in	smaller	modules	 than	a	
typical	4-credit	course	in	our	curriculum.	And	therefore,	one	may	need	to	consider	more	than	one	
online	courses	together	to	be	equivalent	to	one	course	in	the	college.	It	may	also	be	noted	that	just	
like	some	small	aspects	of	the	course	may	not	be	present	in	the	modules	chosen,	there	may	be	some	
aspects	of	the	online	modules	which	were	not	part	of	the	college	course.	This	amount	of	flexibility	
should	be	acceptable	to	the	college.	Typically,	if	the	online	content	covers	80%	of	the	college	course,	
it	may	be	accepted.	

While	autonomous	colleges	and	universities	do	have	this	flexibility,	the	affiliated	colleges	may	not	
have	the	flexibility	of	not	teaching	even	20%	of	the	content.	In	case	of	affiliated	colleges,	one	will	
have	to	either	be	stricter	in	course	mapping,	or	find	a	way	to	cover	the	gaps	through	a	local	faculty	
or	a	visiting	faculty.	It	 is	assumed	that	it	 is	easier	to	find	a	visiting	faculty	for	a	small	part	of	the	
course	and	hence	it	is	still	a	useful	mode.	

It	may	also	be	noted	here	that	for	Core	courses,	the	overlap	needs	to	be	significantly	higher	while	for	
the	elective	courses,	the	overlap	could	be	relaxed	somewhat.	It	is	because	the	core	courses	typically	
are	pre-requisites	for	other	courses.	Also,	core	courses	have	been	defined	to	be	such	because	it	is	
assumed	that	that	content	is	more	important	for	the	graduates	than	what	is	taught	in	electives.	

However,	course	mapping	is	still	not	an	easy	thing	to	do.	It	requires	an	understanding	of	important	
versus	less	important	components,	and	quality	of	content	among	the	plethora	of	options	available.	
It	may	require	someone	to	go	through	the	content	patiently.	

And	 hence	 it	 is	 recommended	 that	 for	 standard	 courses	 recommended	 in	 the	 AICTE	 model	
curriculum,	a	course	mapping	may	be	suggested	for	the	benefit	of	colleges	and	universities.	A	few	
example	course	mappings	are,	therefore,	attached	with	this	report.	

	

90	

	

Evaluation	

In	Modes	1,	2,	and	3,	the	complete	evaluation	is	local,	and	hence	there	is	no	issue.	In	Mode	4,	we	need	
to	consider	an	external	evaluation	and	use	that	internally.	This	is	a	challenge.	There	is	a	difference	
in	how	to	handle	this	in	a	university	versus	an	affiliating	college.	In	a	university,	a	simple	way	of	
handling	this	would	be	to	assign	a	Pass/Fail	grade	to	the	student.	In	case	of	an	affiliating	college,	
where	 only	 the	 internal	 marks	 need	 to	 be	 forwarded	 to	 the	 university,	 one	 could	 consider	 the	
external	evaluation	since	it	impacts	only	30%	of	the	marks,	and	the	university	will	anyway	have	its	
own	exam	of	70%	marks.	

There	are	other	models	like	normalizing	the	external	evaluation	to	the	college’s	internal	policy	or	
average	distribution	of	marks	in	other	courses.	

It	is	assumed	that	in	Mode	4,	there	is	a	formal	way	of	communicating	performance	of	the	student	by	
the	provider	of	the	online	courses	since	colleges	and	universities	will	not	accept	screen	shots,	emails,	
etc.	

Other	Issues	

Financial:	If	there	is	a	fee	to	be	paid	for	online	content,	the	college	should	have	a	policy	on	that.	
Typically,	 if	the	savings	due	to	reduced	faculty	requirements	are	significant,	then	the	fees	for	the	
online	provider	may	be	reimbursed	by	the	college.	

Teaching	Load:	Faculty	member	supporting	the	course	whether	by	taking	a	few	discussion	sessions	
(in	Mode	2)	or	by	evaluating	the	students	(in	Mode	3)	is	still	putting	in	substantial	effort	in	managing	
the	course,	and	an	appropriate	credit	should	be	given	to	the	faculty	member	when	his/her	teaching	
load	is	computed.	

Training	the	teacher:	When	a	course	is	being	done	in	Mode	3,	the	local	faculty	member	should	also	
be	expected	 to	register	 for	 the	course	and	go	 through	the	course	(with	 load	being	appropriately	
counted).	After	a	faculty	member	has	gone	through	the	course	in	two	academic	sessions,	s/he	would	
be	well	prepared	to	teach	the	course	in	the	class	in	a	much	better	way.	Even	if	the	course	is	being	
offered	in	Mode	4,	there	is	no	harm	in	asking	a	faculty	member	to	register	for	the	course	and	go	
through	 it.	Some	responsible	person	 in	 the	college	would	know	the	 level	of	the	course	and	what	
exactly	students	have	done,	and	again,	after	two	such	sessions,	the	faculty	member	would	be	well	
prepared	to	teach	the	course.	Hence	this	mode	will	also	lead	to	better	training	of	the	teachers.	

Limits	on	Credits:	The	committee	believes	that	there	should	be	a	limit	on	the	number	of	credits	
students	can	earn	through	online	courses.	In	case	of	Mode	4,	where	even	the	evaluation	is	done	by	
the	online	course	provider,	the	proposed	limit	is	8	credits	only.	It	is	felt	by	the	committee	that	the	
evaluation	by	online	providers	is	still	not	fully	trustworthy.	As	the	technology	for	online	exams	or	
the	processes	for	evaluation	by	online	providers	improve	over	a	period	of	time,	this	limit	may	be	
increased.	In	case	of	Mode	3	where	the	content	is	delivered	online	but	evaluation	is	local,	the	limit	
can	be	high.	For	Mode	3	and	Mode	4	combined,	the	limit	can	be	what	the	regulatory	bodies	like	UGC	
have	announced	for	online	courses,	which	is	currently	40%	of	the	total	credits.	In	Modes	1	and	2	
where	the	online	content	is	really	the	reference	material,	there	is	no	need	for	any	limit.	

91	

Another	 constraint	 the	 committee	would	want	 the	 colleges	 to	 consider	 is	 that	 in	 a	 sequence	 of	
courses	in	one	stream	of	Computer	Science,	at	least	one	course	should	be	in	class.	For	example,	if	we	
consider	the	sequence	of	systems	courses	–	Operating	Systems,	Databases,	Networks,	Architecture,	
at	least	one	course	should	be	in	class.	This	is	to	ensure	that	if	there	were	some	gaps	in	online	courses,	
the	faculty	in	the	face	to	face	class	can	try	to	cover	that	to	some	extent.	

																		 Faculty	 Incentive:	 There	 is	 a	 need	 to	 provide	 some	 incentive	 to	 faculty	 members	 who	 would	
manage	the	course	that	is	being	taught	in	the	online	mode.	If	a	course	is	being	taught	in	Mode	2,	the	
load	on	the	faculty	is	only	marginally	less	than	the	load	of	teaching	an	in	person	course.	So	the	full	
teaching	load	should	be	considered	for	the	faculty.	In	Mode	3,	the	load	is	much	less,	and	in	Mode	4,	
the	load	is	only	that	we	are	asking	the	faculty	to	also	go	through	the	course	along	with	the	students.	
In	 these	 two	modes,	 the	 college	may	 consider	 this	 as	 reduced	 load.	However,	 their	 learning	 the	
course	may	be	treated	as	equivalent	to	having	done	a	Faculty	Development	Program	when	it	comes	
to	their	appraisal	and	promotions.	

Consideration	in	NBA	Accreditation:	One	of	the	prime	reason	why	online	courses	haven’t	become	
popular	with	colleges	 is	 that	 they	must	recruit	 faculty	with	a	certain	 faculty	 to	student	ratio	 for	
accreditation	and	ranking.	And	once	they	have	recruited	faculty,	one	would	always	want	the	faculty	
to	teach	and	not	keep	them	under-loaded.	If	one	can	consider	online	courses	as	equivalent	to	faculty	
strength	while	deciding	faculty-to-student	ratio,	then	colleges	would	be	attracted	to	online	courses.	
A	 typical	 faculty	member	 teaches	 about	100	students	 in	a	 semester	 (across	2-3	 courses).	 If	 100	
students	do	a	course	in	Mode	4,	we	may	consider	this	as	equivalent	to	having	one	additional	full	time	
equivalent	 (FTE)	 faculty	member	 on	 the	 rolls	 of	 the	 college	 for	 that	 semester.	 Similarly,	 if	 200	
students	do	a	course	in	Mode	3,	we	may	consider	this	as	equivalent	to	having	one	additional	FTE	
faculty	member	for	that	semester.	

	

Online	offering	of	AICTE	Model	Curriculum	Courses	by	Experts	

It	is	known	that	a	significant	number	of	colleges	do	not	have	adequately	qualified	faculty	to	teach	the	
courses	in	the	model	curriculum	properly.	This	proposal	tries	to	alleviate	this	challenge	by	utilizing	
our	newly	acquired	comfort	level	with	online	education.	Essentially,	the	suggestion	is	that	AICTE	
incentivizes	top	faculty	to	offer	the	AICTE	model	courses	online,	and	publishes	a	calendar	of	such	
courses	well	in	advance,	so	colleges/HEIs	can	use	them	for	teaching	the	AICTE	curriculum.		

The	following	would	be	the	salient	features	of	the	proposed	scheme	
1. All	the	identified	core	courses	and	later	on	some	key	electives	of	the	AICTE	curriculum	may	

offered	regularly	(maybe	every	semester)	with	a	predefined	calendar	enabling	colleges	to	
plan	using	them	for	their	students.	

2. For	 each	 course	 AICTE	 identifies	 through	 a	 process	 a	 set	 of	 “Distinguished	 National	
Technical	Teachers”	who	are	subject	experts	and	who	also	have	experience	 teaching	 the	
course	at	the	undergraduate	level.	

3. These	“Distinguished	Teachers”	are	offered	financial	reward	for	offering	one	course	online	
once	every	2	to	3	years.	The	reward	must	be	substantial	to	make	it	prestigious	as	well	as	
attractive.	Suitable	funding	is	also	made	available	to	the	instructor	for	engaging	TAs	for	help	
sessions	as	well	as	laboratory	exercises.	

4. AICTE	can	also	recognize	industry	professionals	in	the	panel	of	distinguished	faculty	as	they	
can	make	these	courses	more	 interesting	and	 industry	oriented.	They	could	 teach	 jointly	

92	

with	academics	appointed	as	Distinguished	Teachers	and	handle	certain	components	of	the	
course.	The	Distinguished	Teachers	will	be	encouraged	to	actively	invite	guest	faculty	from	
industry	 and/or	professional	 associations	(e.g.	ACM)	to	 give	 lectures	 in	 these	 courses	 to	
make	them	more	interesting	and	industry	oriented.	

5. There	is	a	registration	procedure	for	colleges	(not	individual	students)	to	register	for	making	
this	course	available	to	their	students.	They	should	also	commit	to	assigning	an	instructor	
for	coordinating	classes	including	infrastructure,	conducting	assessments,	help	in	grading	
etc.	

6. Colleges	may	be	asked	to	pay	a	reasonable	amount	as	registration	charges	so	that	the	scheme	
is	self-sustaining.	

7. This	will	be	an	AICTE	scheme	for	teaching	its	model	curriculum	courses	by	experts.	It	can	be	
managed	by	AICTE	directly,	or	 it	can	offer	 it	 to	other	 institutions/consortium	to	manage	
them.	Any	platform	(e.g.	NPTEL)	can	be	used	to	deliver	these	courses.	
	

This	approach	differs	from	the	currently	available	online	courses	from	NPTEL	and	other	platforms	
substantially.	

1. Syllabus	for	each	course	is	the	approved	AICTE	syllabus	
2. The	courses	would	be	available	against	a	set	calendar	each	semester	making	it	possible	for	

colleges	to	rely	on	them	
3. It	empowers	the	college	rather	than	individual	students	to	make	use	of	the	online	course	in	

a	 “mixed”	mode	 and	 thus	 addresses	 the	 deficiency	 of	 expertise	 in	 specific	 areas	 in	 that	
college	

4. With	suitable	incentive	(both	prestige	and	financial)	top	experts	may	be	motivated	to	offer	
these	courses.		

	

Prepared	 by:	Dheeraj	 Sanghi	 (JKLU),	 Kishore	 Kothapalli	 (IIITH),	 Ashalata	 Nayak	 (MAHE-MIT),	
Suchismita	Roy	(NIT	Durgapur),	RBV	Subramanyam	(NITW),	Divya	Bansal		(PEC),	M.	Balakrishnan	
(IIT	Delhi)	

	
 	

93	

Appendix:	Recommendations	for	Possible	Exits	for	a	BTech	CSE	
Preamble	
NEP2020	suggests	 that	a	student	should	have	multiple	exits.	This	note	suggests	a	possibility	 for	
BTech	CSE	students.	It	should	be	emphasized	that	it	is	a	choice	which	a	student	may	wish	to	take	
due	to	his/her	financial/family/….	situation	and	needs,	and	that	it	should	not	be	considered	as	a	
failure	option.	We	suggest	two	exits,	and	flexible	reentry	options.		

	

Certificate	in	Computer	Science		
A	student	should	be	able	to	get	a	certificate	if	he/she	completes:	

1. 50%	of	the	credits	for	BTech	
2. 50%	of	CSE	program	core	courses	(some	specific	courses	may	be	specified,	so	the	leaving	

student	has	decent	skills)	
3. Institution	may	specify	some	CGPA	requirements		

	

BSc	in	Computer	Science	
A	student	should	be	able	to	get	a	BSc		if	he/she	completes:	

1. 75%	of	the	credits	for	BTech,	and	at	least	3	years	in	the	program	
2. 100%	of	CSE	core	program	courses	
3. Institution	may	specify	some	CGPA	requirements		

	With	BSc,	the	student	is	eligible	for	entry	into	programs	which	take	BSc	as	an	eligibility	criteria.	

	

Reentry	to	complete	the	program	
A	 student	 exiting	 with	 a	 certificate	 or	 BSc	 should	 be	 entitled	 to	 reenroll	 in	 the	 program.	 It	 is	
suggested	 that	all	 credits	will	 be	 transferred,	 if	 the	 student	 enrolls	 back	within	a	 limited	period	
(suggested:	3	years)	of	exiting.	In	case	a	student	enrolls	after	that,	then	the	transfer	of	credits	should	
be	examined	by	looking	at	the	change	in	the	curriculum	from	what	the	student	did.	

	

Completion	Possibility	in	other	Institutions	
It	 will	 be	 desirable	 for	 HEIs	 to	make	 it	 possible	 for	 a	 student	 to	 earn	 a	 certificate/BSc	 in	 one	
institution	and	complete	the	degree	program	in	another.	This	will	enhance	the	value	of	certificates	
and	BSc	and	encourage	competition	among	HEIs.	
	
If	these	exit	options	are	accepted	for	multiple	BTech	programs,	it	is	suggested	that	AICTE	actively	
communicate	these	to	the	industry	and	other	bodies,	so	they	recognize	these	and	accept	them	as	
bona-fide	credentials	for	the	purposes	of	recruitment	and/or	eligibility	for	admission	to	programs,	
appearing	in	competitive	examinations,	etc.	

	

Prepared	by:	Prof.	M.	Balakrishnan	(IIT	Delhi),	Prof.	Anshul	Kumar	(IIT	Delhi),	Prof.	Pankaj	Jalote	
(IIIT-Delhi)	

94	

	

Committee	and	Area	Experts	
	

Experts	appointed	by	AICTE:	

● Pankaj	 Jalote,	 Distinguished	 Professor	 and	
founding	Director,	IIIT-Delhi	(Chair)	

● Manoj	Singh	Gaur,	Director	IIT	Jammu	
● Nutan	Limaye,	IIT	Bombay	
● Ramkumar,	 Pro	 Vice-Chancellor	 at	 Krea	

University		
● Dheeraj	 Sanghi,	 Vice-Chancellor,	 JK	

Lakshmipat	University,	Jaipur	
● Amit	Aggarwal,	NASSCOM	

Other	Experts	in	the	Committee:	

● Kishore	Kothapalli,	Professor,	IIIT	Hyderabad		
● Sudeshna	Sarkar,	Professor,	IIT	Karaghpur		

● Sukumar	Nandi,	Professor,	IIT	Gauhati		
● Suchismita	Roy,	Professsor,	NIT	Durgapur		
● Ashalatha	Nayak,	Professor,	Manipal	 Institute	

of	Technology	
● RBV	Subramanyam,	Professor,	NIT	Warangal		
● Sanjiva	Prasad,	Professor,	IIT	Delhi		
● Venkatesh	R,	TCS	Pune	
● Viraj	Kumar,	ACM	India	Education	Committee	
● Vishram	Thatte,	Amazon	India	
● Vinnie	Jauhari,	Microsoft	India	
● R	Latha,	IBM	India	
● Gaurav	Aggarwal,	Google	India	
● Vinayaka	Ram	Gururajan,	TCS	
● Thirumala	and	Sundar	K	S,	Infosys	
● P.B.	Kotur,	Wipro	
● Ishvinder	Singh,	Cisco	Systems,	Inc.	
● Rahul	Suresh	Ghali,	Accenture

Expert	Committees	for	Different	Courses,	Micro	specializations,	Credits	for	online,	…	

Course	 Experts	in	the	Committee	

Data	Structures	 Madhavan	Mukund	(CMI),	Manindra	Agrawal	(IIT	Kanpur),	Naveen	
Garg	(IIT	Delhi),	Amit	Kumar	(IIT	Delhi),	Venkatesh	Raman	(IMSC)	

Discrete	Mathematics	 Nitin	Saxena	(IIT	Kanpur),	Somenath	Biswas	(IIT	Goa),	Partha	
Mukhopadhyay	(CMI),	Bhabani	P	Sinha	(ISI	Calcutta)	

Algorithm	Design	and	
Analysis	

Madhavan	Mukund	(CMI),	Manindra	Agrawal	(IIT	Kanpur),	Naveen	
Garg	(IIT	Delhi),	Amit	Kumar	(IIT	Delhi),	Venkatesh	Raman	(IMSC)	

Computer	
Architecture/Organizatio
n	

M.	Balakrishnan	(IIT	Delhi)	,	John	Jose	(IIT	Gauwhati),	Biswadip	
Panda	(IIT	Bombay),	Anupam	Basu	(IIT	Kgp),			Indranil	Sengupta	
(IIT	Kgp),	Anshul	Kumar	(IIT	Delhi)	

Advanced	Programming	 Kishore	Kothapalli	(IIIT	Hyderabad),	Vivek	Kumar	(IIIT	Delhi),	
Swarnendu	Biswas	(IIT	Kanpur)	

Operating	Systems	 Purushottam	(Puru)	Kulkarni	(IIT	Bombay),	Debadatta	Mishra	(IIT	
Kanpur),	Chester	Rebeiro	(IIT	Madras)	

Databases	 Arnab	Bhattacharya	(IIT	Kanput),	Sreenivasa	Kumar	(IIT	Madras),	
Vikram	Goel	(IIIT-Delhi),	S	Sudarshan	(IIT	Bombay)	

89

Computer	Networks	 BN	Jain	(IIIT	Delhi),	Timothy	Gonsalves	(IIT	Mandi),	Vinay	Ribero	
(IITB),	Mythili	Vutukury	(IIT	Bombay),	PM	Sreelakshmi	(IIT	Mandi)	

Machine	Learning	 CV	Jawahar	(IIIT	Hyderabad),	PJ	Narayanan	(IIIT	
Hyderabad),	Vineeth	Balasubramanian	(IIT	Hyderabad),	P.	K.	
Biswas	(IIT	Kgp),	Mitesh	Khapra	(IIT	Madras),	Piyush	Rai	(IIT	
Kanpur),	Preethi	Jyothi	(IIT	Bombay),	Pabitra	Mitra	(IIT	
Kgp),	Chetan	Arora	(IIT	Delhi)	

Security	 Sandeep	Shukla	(IIT	Kanpur),	Sambuddho	Chakravarty	(IIIT	Delhi),	
S.Venkatesan	(IIIT	Allahabad),	Vinod	Ganapathy	(IISc)	

Theory	of	Computing	 Raghunath	Tewari	(IIT	Kanpur),	Jayalal	Sarma	(IIT	Madras),	S	
Akshay	(IIT	Bombay)	

Compilers	 Uday	P.	Khedker	(IIT	Bombay),	V.	Krishna	Nandivada	(IIT	Madras),	
Dibyapran	Sanyal	(nvidia)	

Software	Engineering	
Micro	specialization	

Pankaj	Jalote	(IIIT-Delhi),	Raghu	Reddy	(IIIT	Hyderabad),	Vinay	
Kulkarni	(TCS),	Meenakshi	Dsouza	(IIIT	Bangalore)	

Cyber	Security	Micro	
specialization	

C.	V.	Jawahar	(IIIT	Hyderabad),	P.	J.	Narayanan	(IIIT	Hyderabad)	

Distributed	and	Cloud	
Micro	specialization	

Yogesh	Simmhan	(IISc	Bangalore),	Purushottam	Kulkarni	(IIT	
Bombay)	

HCI	micro	specialization	 Pushpendra	Singh	(IIIT-Delhi),	Anirudha	Joshi	(IIT	Bombay)	

Subcommittee	for	
recommendations	for	
online	offerings	

Dheeraj	Sanghi	(JKLU),	Kishore	Kothapalli	(IIITH),	Ashalata	Nayak	
(MAHE-MIT),	Suchismita	Roy	(NIT	Durgapur),	RBV	Subramanyam	
(NITW),	Divya	Bansal		(PEC),	M.	Balakrishnan	(IIT	Delhi)	

Subcommittee	for	
multiple	exit	options	

Prof.	M.	Balakrishnan	(IIT	Delhi),	Prof.	Anshul	Kumar	(IIT	Delhi),	
Prof.	Pankaj	Jalote	(IIIT-Delhi)	

	

