Graduate Attributes for AICTE Model CSE Curriculum

Curriculum of a program is finally a network of credit units – courses (core, disciplinary core, disciplinary elective, open), internships, practice, projects, etc. which help achieve program goals. *Program goals can be stated as attributes the students should possess on graduation, i.e. statements about the learning, values, capabilities etc. of graduates. These are called Graduate Attributes (GAs)*. A program typically has:

- General GAs: which are often common across many similar programs (e.g. BTechs) and focus on generalized skills and capabilities in the graduate.
- Discipline GAs: are discipline specific attributes, which focus on understanding of different concepts and systems related to the discipline, and on competencies and skills in that discipline.

Together the GAs define the goals of the program. The aim of curriculum design is to evolve a curriculum that can develop in students the stated graduate attributes. While specifying the GAs and designing a curriculum for it, we must keep a *basic constraint in mind: A program has 8 semesters, each with about 5 full courses. GAs should specify only what can be taught and absorbed in this timebox (i.e. we cannot push more simply by adding more.*)

Desired Graduate Attributes for the CSE program are given below. The CSE curriculum design will focus more on delivering the discipline GAs, while strengthening the general GAs, where possible. (GAs should be read by adding this at the start of each: At graduation time, a student should have:

General Graduate Attributes		Discipline Graduate Attributes (for CSE)
G1	Ability to identify a problem, analyze using	CS1 Proficiency in writing in at least two dissimilar
	design thinking techniques, and evolve	programming languages programs of modest
	innovative approaches for solving it	complexity which are: readable, tested for
G2	Ability to apply mathematical concepts and	correctness, efficient, and secure
	techniques in problem solving	CS2 Ability to design and apply appropriate algorithms
G3	Ability to function effectively in multi-	and data structures for evolving efficient computing
	cultural teams to accomplish a common	based solutions for new problems
	goal	CS3 Understanding of computing systems at computer
G4	Ability to communicate effectively with a	architecture, operating systems, and distributed-
	wide range of audience	computing levels, and how they affect the
G5	Ability to self-learn and engage in life-long	performance of software applications
	learning and upgrade technical skills	CS4 Understanding of theoretical foundations,
G6	An understanding of professional and	fundamental principles, and limits of computing
	ethical responsibility	CS5 Ability to analyse large volumes of data employing a
G7	Ability to undertake small research tasks	variety of techniques for learning, better prediction,
	and projects	decision making, etc.
G8	An entrepreneurial mindset for	
	opportunities using technology and	CS6 Ability to design, implement, and evaluate computer
	innovations	based system or application to meet the desired
G9	An understanding of impact of solutions on	needs using modern tools and methodologies
	economic, societal, and environment	CS7 Ability to develop full stack applications using one
	context	commonly used tech-stack and modern tools
G10 Strong emotional intelligence, human and		CS8 Understanding of and ability to use advanced
	cultural values	techniques and tools in a few different domain areas
		(e.g. parallel processing, image processing, IR,)
		CS9 Exposure to emerging technologies such as Cloud
		Computing, IoT, etc